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Summary

The study of dynamic spatial and social phenomena in cities has evolved rapidly in
the recent years, yielding new insights into urban dynamics. This evolution is strongly
related to the emergence of new sources of data for cities, which have potential to
capture dimensions of social and geographic systems that are difficult to detect in
traditional urban data (e.g. census data). The majority of datasets that are generated
from these new sources (e.g. sensors, mobile phones, online social media etc.) are
spatially and temporally disaggregated, addressing short time intervals and individual
locations of places and social agents. However, as the available sources increase in
number, the produced datasets increase in diversity. Although the current capabilities
of computing systems allow the storage, processing, analysis, and visualization of
large-scale data, integration remains a challenge. In tackling the multifarious social,
economic, and environmental challenges facing cities due to rapid urbanization,
planners and policy makers need supporting frameworks to capitalize on the new
possibilities given by emerging sources of social urban data.

To address the above challenge, this thesis proposes the design of a framework of novel
methods and tools for the integration, visualization, and exploratory analysis of large-
scale and heterogeneous social urban data to facilitate the understanding of urban
dynamics. The research focuses particularly on the spatiotemporal dynamics of human
activity in cities, as inferred from different sources of social urban data. The main
objective is to provide new means to enable the incorporation of heterogeneous social
urban data into city analytics, and to explore the influence of emerging data sources on
the understanding of cities and their dynamics.

In association with the aim and objective of this thesis, the main research question is:

“How to integrate heterogeneous and multidimensional social urban data into the
analysis of human activity dynamics in cities?”

The main question is further divided into five sub-questions. Accordingly, the research
design is organized into five main parts, each one corresponding to one of the five
sub-questions. The methods used to answer the research questions, along with the
corresponding findings are presented in the following paragraphs.
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What are the characteristics that distinguish emerging social urban data from
traditional ones? — (Chapter 2)

After formulating the research aim, objectives, and scope, the concept of “social urban
data” isintroduced and defined (Chapter 2) to encompass data for cities that:

are generated either directly or indirectly from people and their actions;

derive from emerging sources such as sensors, mobile phones, geo-enabled social
media, and LBSNs;

are multidimensional in nature, meaning that they are spatially and temporally
referenced;

can be used to infer spatial, temporal, and social aspects of human movement, activity,
and social connectivity;

but are less structured and more semantically ambiguous than traditional urban data.

Following up on this definition, the characteristics of social urban data are described

in comparison with traditional data for cities, by reviewing existing literature. The
characteristics are namely: diversity, scale, timeliness, structure, spatiotemporal
resolution, semantic expressiveness, representativeness, and veracity. Chapter 2
explores the extent to which each of the aforementioned characteristics typifies a
certain data type or source and, further, investigates the strengths and weaknesses of
social urban data as proxies for the analysis of urban dynamics. The identified strengths
and weaknesses are used as a general basis for the design of the various methods and
tools proposed by this research.

Social urban data do not comprise a unified category of data with common
characteristics. In fact, according to the source that generates them (i.e. sensors, mobile
phones, geo-enabled social media, and LBSNs), they may be characterized by varied
levels of diversity, scale, timeliness, structure, spatiotemporal resolution, semantic
expressiveness, representativeness, and veracity. However, it is argued that the eight
aforementioned characteristics are not only inherent to emerging social urban data, but
are also present - to a greater or lesser extent - in traditional data for cities.

The most distinguishing characteristic that differentiates emerging social urban data
from traditional ones, is the purpose guiding their generation. Although conventional
data for cities are created ad hoc, social urban data are generated organically and serve
a variety of purposes. As such, they contain contextual, technological, geographical,
demographic, and cultural biases, which in turn affect the overall data quality. In using
social urban data as proxies for the analysis of urban dynamics, the identification of
these biases is of critical importance to the interpretation of the obtained results.

To leverage the intrinsic biases of social urban data and to extract unambiguous
knowledge about the dynamics of cities, the integration of data from multiple sources
is, therefore, deemed necessary.

Revisiting Urban Dynamics through Social Urban Data
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How to transform heterogeneous data for cities into multidimensional linked urban
data? — (Chapter 3)

Drawing on the necessity to employ different types of urban data in the analysis of cities
and their dynamics, approaches to data integration are explored (Chapter 3). The fusion
of data from multiple sources is hardly straightforward. What makes the assembly
cumbersome, is in fact the inherent diversities of the sources from which the data stem.
More specifically, the heterogeneities may pertain to differences in syntax (i.e. different
data encoding), schemas (i.e. different structure and entity relationships), semantics
(i.e. diverse contextual interpretations), or combinations of these three aspects.

In mitigating the various heterogeneities, a methodology for the transformation of
heterogeneous data for cities into multidimensional linked urban data is designed and
presented in Chapter 3. The methodology follows an ontology-based data integration
approach and accommodates a variety of semantic (web) and linked data technologies.
Overall, it comprises three main processes, namely: (a) urban data integration, (b)
linked urban data generation, and (c) publication to the LOD cloud. In a nutshell, the
proposed methodology consists of the following steps:

Semanticintegration:
— Selection of data sources and data preprocessing
— Data analysis and modeling
— Schema extraction
— Resource naming strategy definition
— Ontology design and development
— Terms extraction
— Reuse of existing ontologies and external structured vocabularies
Terms hierarchy and ontology conceptualization
Ontology evaluation
— Mapping source data to the ontology (data transformation)
Transformation into multidimensional linked urban data:
— Establishing links with other sources
Publication to the LOD cloud:
— Ontology and RDF dataset publication on the Web
— Documentation accessibility (human-readable and machine-processable)
— Registration into a Linked Data catalog and publication to the LOD cloud

The methodology is demonstrated through a use case, employing real-world data
from multiple sources. In particular, nine large-scale spatiotemporal data sets are
collected from three public transportation organizations and cover the entire public
transport network of the city of Athens, Greece. As part of the data integration process,
an ontology for public transportation systems is also designed and implemented.
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The resulting integrated dataset is further linked to external resources to provide richer
descriptions of the source data, and is eventually published to the LOD cloud.

The transformation of heterogeneous data for cities into multidimensional linked
urban data has potential to provide richer descriptions of urban dynamics. Moreover,
their publication to the LOD cloud facilitates their discovery and exploitation by
stakeholders of different (city) domains. The methodology can be replicated and
adapted to serve different types of (social) urban data, irrespective of the chosen
sources. As it is based on ontologies, it also enables the semi-automatic iteration of
the data mapping for any future updates of the source data, provided that the latter
maintain their initial schemas.

How could urban planners, researchers, and policy makers leverage the potential of
multidimensional linked data in city analytics? — (Chapter 4)

To encourage the consumption of linked urban data, as well as the incorporation of
the above-described methodology (Chapter 3) into urban planning, research, and
policy-making, a set of web-based tools for the visual representation of ontologies and
linked data is designed and developed (Chapter 4). After reviewing existing approaches
to and tools for ontology and linked data visualization, the identified limitations of
related work set the basis and requirements for the design of the proposed tools. The
tools - comprising the OSMoSys framework - provide graphical user interfaces for the
visual representation, browsing, and interactive exploration of both ontologies and
linked urban data. The use of different visualizations - in the form of interactive web
documents and force-directed graphs - aim to support the adoption and consumption
of linked urban data, without requiring extensive knowledge of the technology stack
that underpins them. Therefore, the tools provide easy-to-use interfaces, accessible to
a wide range of users, either experienced or amateur ones.

To further support the production of multidimensional linked urban data, an upper-
level ontology is developed that formally describes and represents the relationships
between the various elements of urban networks, pertinent to both the social and
spatial sphere of urban systems. Individual datasets with heterogeneous attributes
can be mapped to the aforementioned ontology and fused into a single dataset that
combines the different attributes together.

The overall OSMoSys framework uses solely open software and standards, is provided

under open licenses, and can be accessed through commonly-used web browsers. One of
the aims of this framework is to assist in bridging, to some extent, the gap between linked
data consumers and ontology engineers. Moreover, it can be used by domain experts as a
basis to evaluate ontologies under development. Two ontologies and one large-scale linked
dataset are used as benchmarks to test the potential and limitations of the framework.

Revisiting Urban Dynamics through Social Urban Data
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What types of attributes can be derived from social urban data in relation to the
dynamics of human activity? — (Chapter 5)

Afterintroducing new methods (Chapter 3) and tools (Chapter 4) for the generation
of linked data for cities that could offer richer descriptions of the urban environment
than data from a single source, the attributes that can be derived from various social
urban data are investigated (Chapter 5). Besides multidimensional linked urban
data, it is also possible to derive several attributes of people and places from different
geo-enabled social media content and LBSN data. To extract these attributes, a set of
methods and techniques are described.

Prior to this, different approaches to measuring, modeling, and characterizing urban
space are discussed, by reviewing existing literature. The focus is on the attributes

- derived from both traditional and emerging sources of data - that have been used
hitherto to measure and model urban systems and their dynamics. Next, the types of
attributes in addition to the methods and techniques for extracting them, primarily
from geo-enabled social media and LBSNs, are described. The derived attributes
refer to characteristics of both the people who perform a certain (social) activity (e.g.
socio-demographic characteristics, home location, individual trajectory, activity space,
sentiments etc.) and the places where activities occur (e.g. land use, type of activity).
The attributes are classified into four categories according to the nature of the feature
they describe, namely: (1) socio-demographic attributes, (2) functional attributes of
places, (3) individual spatial movement patterns, and (4) topical attributes. The first
category refers to the approximated home location of individuals and characteristics
such as gender, age range, and ethnicity. The second category refers to approximated
land uses of POIs. The third category is about individual trajectories and activity spaces.
The fourth category refers to the semantics and sentiments that can be derived from
social media content. Further, Chapter presents how the derived attributes help
measure the functional density and diversity of urban areas, as well as the geographical
extents of activity spaces over different periods of time.

The incorporation of these attributes into urban analytics helps deviate from traditional
approaches, in which people and places are usually perceived as aggregate uniform
parameters within spatial subdivisions. The methods and techniques to extract
disaggregate attributes from social urban data set the foundation for the design of

a system that performs analyses on these attributes and provides insight into the
dynamics of human activity in cities (Chapter 6).
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How do different sources of social urban data influence the understanding of the
spatiotemporal dynamics of human activity in cities? — (Chapter 6)

After introducing methods and tools for data integration (Chapter 3), visual exploration
of linked urban data (Chapter 4), and derivation of various attributes of people and
places from different social urban data (Chapter 5), it is examined how they can all

be combined into a single platform and put to use in understanding spatiotemporal
patterns of human activity in cities. To achieve this, a novel web-based system for

the visualization and exploratory analysis of human activity dynamics is designed
(Chapter 6). The system (coined SocialGlass) combines data from various geo-enabled
social media (i.e. Twitter, Instagram, Sina Weibo) and LBSNs (i.e. Foursquare), sensor
networks (i.e. GPS trackers, Wi-Fi cameras), and conventional socio-economic urban
records, but also has the potential to employ custom datasets from other sources.
Further, it accommodates a variety of visualization types and data filters to support
the visual exploratory analysis of the spatiotemporal dynamics of human activity, as
inferred from different social media.

Areal-world case study is also analyzed and used as a demonstrator of the capacities

of the proposed web-based system in the study of urban dynamics (Chapter 6). The
case study explores the potential impact of a city-scale event (i.e. the Amsterdam Light
festival 2015) on the activity and movement patterns of different social categories

(i.e. residents, non-residents, foreign tourists), as compared to their daily and

hourly routines in the periods before and after the event. The aim of the case study

is twofold. First, to assess the potential and limitations of the proposed system and,
second, to investigate how different sources of social urban data could influence

the understanding of urban dynamics. To this end, a visual exploratory analysis is
conducted on the collected data with the use of the SocialGlass system, in addition to a
spatial autocorrelation analysis on 28 different variables of human activity, using global
and local indices of autocorrelation along with statistical tests to assess the significance
of the obtained results.

The findings of the case study suggested that it is necessary to consider different social
categories of people, rather than aggregate populations, when studying the dynamics
of human activity and movement behavior. Moreover, if social urban data - especially
online social media - are used as proxies for the analysis of urban dynamics, the data
collection period and the data source play a crucial role, when it comes to anomalies
that could be reflected in the collected data, which could in turn lead to biased
interpretations.
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Conclusions and outlook

The increasing availability of data for cities that are generated by emerging sources,
such as sensor networks, mobile phones, geo-enabled social media, and LBSNs

have the potential to provide new insights into urban dynamics, but also create new
challenges for urban planners, researchers, and policy makers. These data are mainly
characterized by heterogeneity, owing to the variety of sources and the diversity of
purposes they serve, and multidimensionality, meaning that the information they
contain may simultaneously address spatial, social, temporal, and topical features
of people and places. In addition, they offer new perspectives on how complex socio-
spatial phenomenain cities change over shorter time intervals, compared to the
sparsely updated conventional urban data. On the downside, though, is the muddled
data structure, the ambiguous semantics of the contained information, and the several
biases (of contextual, demographic, cultural, geographic, technological, or other
nature).

The contribution of this doctoral thesis is the design and development of a framework
of novel methods and tools that enables the fusion of heterogeneous data for cities
and potentially fosters planners, researchers, and policy makers to capitalize on the
new possibilities given by emerging social urban data. Having a deep understanding
of the spatiotemporal dynamics of cities and, especially of the activity and movement
behavior of people, is expected to play a crucial role in addressing the challenges

of rapid urbanization. The adaptability of the methods and tools comprising the
proposed framework enables them to serve scientific fields beyond urban science and
spatial analysis, such as computational social science, urban geography, GIScience,
and (human) mobility studies. Future research could focus on the development of
multilayered urban models that connect the geographical with the social networks

of cities, as well as on comparative studies of urban dynamics across several urban
systems, in both developed and developing countries, using the developed tools.
Overall, the framework proposed by this research has potential to open avenues of
quantitative explorations of urban dynamics by employing a wide range of available
data sources, contributing to the development of a new science of cities.

Summary



32 Revisiting Urban Dynamics through Social Urban Data



33

Korte Inhoud

Het onderzoek naar dynamische, ruimtelijke, en sociale fenomenen in steden is in de
laatste jaren sterk ontwikkeld, hetgeen heeft geleid tot nieuwe inzichten in stedelijke
dynamiek. Deze ontwikkeling is sterk gerelateerd aan het beschikbaar komen van
nieuwe bronnen van data over steden (bv. sensoren, mobiele telefoons, online sociale
media, etc.), die de potentie hebben dimensies van sociale en geografische systemen

te duiden die moeilijk te beschrijven waren op basis van meer traditionele data (zoals
volkstellingen). Omdat er echter steeds meer bronnen beschikbaar komen, zijn

de resulterende datasets ook steeds meer divers. Behalve deze heterogeniteit, zijn
nieuwe sociaal-stedelijke datasets ook multidimensionaal. Dit laatste houdt in dat ze
tegelijkertijd informatie bevatten over zowel locaties, sociale aspecten, tijdsaspecten, en
onderwerps-aspecten van personen en plaatsen. Daarom blijft het integreren en de geo-
spatiéle analyse van deze multidimensionale data een uitdaging. De vraag rijst daarom
hoe dergelijke heterogene en multidimensionale sociaal-stedelijke data geintegreerd kan
worden ten behoeve van het analyseren van menselijke activiteit in steden.

Als antwoord op die vraag beschrijft dit proefschrift het ontwerp van een kader aan
nieuwe methoden en middelen voor de integratie, visualisatie, en exploratieve analyse
van grootschalige en heterogene sociaal-stedelijke data met als doel het begrip van
stedelijke dynamiek te vergroten. Het onderzoekt richt zich met name op de spatio-
temporele dynamiek van de menselijke activiteit in steden, zoals die is afgeleid

uit verschillende bronnen van sociaal-stedelijke data. Het belangrijkste doel is om
nieuwe middelen aan te reiken om heterogene sociaal-stedelijke data te betrekken

bij het maken van stedelijke analyses en om onderzoek te doen naar de invloed van
opkomende databronnen op het begrijpen van steden en hun dynamiek.

Daarom is er, om de verschillende soorten heterogeniteit te compenseren, een
methodologie ontworpen voor het omzetten van heterogene data over steden

in multidimensionale, gekoppelde stadsdata. Voor die methodologie wordt een
benadering voor data-integratie op basis van ontologieén gehanteerd die ruimte biedt
aan een veelheid aan technologieén op basis van semantische en gekoppelde (web)
data. Eris een use case met onderlinge datakoppeling gebruikt om de voorgestelde
methodologie te demonstreren. De use case maakt gebruik van negen grootschalige
spatio-temporele datasets uit de praktijk van drie ov-organisaties, die samen het
gehele ov-netwerk van de stad Athene (Griekenland) dekken.

Om het gebruik van gekoppelde stadsdata door planners en beleidsmakers nog verder te

stimuleren, is er een set webtools ontworpen en ontwikkeld voor de visuele weergave van
ontologieén en gekoppelde data. Deze tools - die samen het OSMoSys-kader vormen -
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hebben grafische gebruikersinterfaces voor de visuele weergave, het doorbladeren en de
interactieve verkenning van zowel ontologieén als gekoppelde stadsdata.

Na de introductie van methodes en hulpmiddelen voor data-integratie, visuele
verkenning van gekoppelde stadsdata en de afleiding van verschillende kenmerken
van mensen en plaatsen uit diverse sociale stadsdata, is onderzocht hoe deze allemaal
kunnen worden gecombineerd tot één platform. Daarvoor is er een nieuw systeem
(genoemd SocialGlass) op webbasis ontworpen voor het visualiseren en verkennend
analyseren van de dynamiek van menselijke activiteit. Dit systeem combineert

data uit verschillende sociale media met geofunctie (Twitter, Instagram en Sina
Weibo) en LBSN's (Foursquare), sensornetwerken (gps-trackers, wificamera’s) en de
conventionele sociaaleconomische stadsadministratie, maar kan ook worden gebruikt
voor andere datasets afkomstig uit andere bronnen.

Eris een casestudy gebruikt om de mogelijkheden van het voorgestelde websysteem
voor het bestuderen van stedelijke dynamiek te demonstreren. In de casestudy zijn
de potentiéle gevolgen van een stadsbreed evenement (het Amsterdam Light Festival
2015) voor de activiteit en bewegingspatronen van verschillende sociale categorieén
(bewoners, bezoekers, buitenlandse toeristen) in kaart gebracht en vergeleken met
de dagelijkse en uurlijkse routine van die categorieén in de periodes voor en na het
evenement. De casestudy heeft een tweeledig doel: in de eerste plaats het beoordelen
van de mogelijkheden en beperkingen van het voorgestelde systeem, en in de tweede
plaats het onderzoeken van de manier waarop verschillende bronnen van stadsdata
onze interpretatie van stedelijke dynamiek kunnen beinvlioeden.

De bijdrage die dit proefschrift levert is het ontwerp en de ontwikkeling van een

kader aan nieuwe methodes en middelen die de combinatie van heterogene,
multidimensionale data over steden mogelijk maakt. Dit kader kan planners,
onderzoekers en beleidsmakers stimuleren om gebruik te maken van de nieuwe
mogelijkheden die in opkomst zijnde sociale stadsdata bieden. Een diepgaand inzicht
in de spatio-temporele dynamiek van steden — met name de activiteit en bewegingen
van mensen - zal naar verwachting cruciaal zijn om het hoofd te bieden aan de
uitdagingen die snelle verstedelijking met zich meebrengt. In zijn algemeenheid maakt
het in dit onderzoek voorgestelde kader een kwantitatieve verkenning van stedelijke
dynamiek mogelijk en levert daarmee een bijdrage aan de ontwikkeling van een nieuwe
wetenschap met betrekking tot steden.
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H peAETN TNC SUVAUIKAG TWV KOWWVIKO-XWPIKWY Gavouévwy €xel e€eAxBel paydaia
Ta TEAELTAIa XPOVIA, TIAPEXOVTAC ETOL VEEG OTITIKEC 0e (NTNUATA ACTIKAC SUVAUIKAG.
H e€eNEN auth) elval dueoa cuvoedepévn Pe TNV avaduon VEWV TINYWY XWPIKWY
Sedopévwy, TA OTIOIA EUTIEPIEXOLY YVWpPIoHATA TIoL SUCKOAQ evToTtiCOVTAl OTA
OLUBATIKA XWPIKA SedoPEVA (T 0TA AroyPAPIKA SESOPEVA). ZTNV TIAEIOVOTNTA TOUG
Ta 6edopEVA QUTA TIPOEPXOVTAL ATTO TINYEC OTIWG, YIA TTAPASEYUA, AIoONTNPEG,
KIvNTA TNAEDWVA, KAl JECA KOWVWVIKAG SIKTOWONG. Elval pGNoTa xwpIKA KAl XPOVIKA
ETIPEPIOPEVA KA, WG EK TOUTOU, KAADTITOLV PIKPA XPOVIKA SlacTAuaTta (T ava AeTTo),
evl) TIapdAANAa apopolV Pepovwuéveg Tomobeaoiec avTi yia eyOAUTERES XWPIKES
evoTNTEC, Ol OTIolEC CLVABWCS CLVAVTWVTAL OTA CLUPRATIKA XWPIKA Sdedopéva. QoTO00,
600 avEAvETAL O APIBPOE TwV SIABECIUWY TINYWY, TOCO ALEAVETAL KA N TTIOIKIAOUOPdIa
Twv apayopevwy d6edopevwy. Mapd TIC TPEXOLOEC dLVATOTNTEG TWV LTIOAOYICTIKWY
cuoTNUATWY, 6owv adopd TNV AMOBrKeLaN, EMeEePYAnia, AQVAALON, KAl ATIEIKOVION
Sedopévwy PEYAANG KAluakag, To {Atnua g evoroinong (integration) SlapopeTikwyv
SeSOUEVWY TTAPAPEVEL TIPOKANGCN. H QVTIUETWITION OPWG TWY TTOAUTIAOKWY KOWVWVIKWY,
OIKOVOUIKWY, Kal TIEPQIBOANOVTIKWY {NTNUATWY TwV COYXPOVWY TIOAEWY artd

TIAEUPAG TIOAEOSOUWV Kal GOPEWV XAPAENG TIOAITIKNAG, blaiTepa Aoyw TnG paydaiag
QAOTIKOTIOINONG, KABIOTA avaykaia TNV avarTuén LMOCTNPEIKTIKWY TTAAICiwY, TA OToia
Ba aflomololy TIC vEee SuvaTOTNTEC TIOL TTAPEXOVTAL aTtd TN oLIELEN avaduduevwY
TINYWYV KOWWVIKO-XWPEIKWY SESOUEVWIV.

AVTATOKPIVOUEVN OTNV TTapanavw TpokANon, N apoloa SlatpiRr) mpoTeivel Tov
oxedlaopd evoc MAAICIOL KAVOTOUWY PEBOSWY Kal LTTIOAOYIOTIKWY EQYCAEiWY yia TNV
€VOTToiNOoN, anekovion, Kal SlepeuvnTIKA AVAAUCH QVOUOIOYEVWY SEOOUEVWY UEYAANG
KAPIOKAG, pe OTOXO TNV KATAvONon TNG SLUVAUIKAC TwV oLYXPovWwY TIOAEwWV. H €peguva
€0TIACEl OLYKEKPWEVA O (NTMUATA XWPIKNG KAL XPOVIKNG JETABOANG TNG avBpwrivng
6pACTNPIOTNTAG OTIG TIOAELG, OTIWG AUTH CLVAYETAL ATTIO SIAPOPETIKES TINYES
KOWVWVIKO-XwpPIKWY dedopévwy (social urban data). 2TOxog TNG €peuvag eival n mapoxn
VEWV PJECWV TIOU ETUTPETIOLY TNV EVOWPATWON AVOLIOIOYEVWY KOWVWVIKO-XWPIKWVY
Sedopevwy otn Sladikacia TNG XWPIKNG avaiuong, kabwg ertiong kat n dlepebivnon
TOUL TPATIOU PE TOV OTIOI0 KABE Evac arod TOLC VEOUC TOTTIOUC 6eSOUEVWY ETIIOPA OTNV
KOTAVONON TV ACTIKWY CUCTNUATWY KAl TwV OLVAUIKWY TOUG.

Me Bdon To mapandvw avTIKEEVO KAl OTOXO TNG €PELVAC, TO KUPIWG EPELVNTIKO
epwTnua eivat:

“lNwc¢ kaBioraral ePIKTr N EVOWUATWON AVOLIOIOYEVIV KOIVWVIKO-XWPIKWV

6ebougvwy aTnv avaAuon NG XWPLIKrG Kal XpOVIKIG KaTtavourg Twv avepwrivwy
SpaotnploTTWV OTIG TOAEIS;”
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To mapandvw epwtnua erpepifeTal oe TIEVTE UTTO-EPWTHUATA. AvTtioTolXa, TO
OX€610 TNG €PELVAC OPYAVWVETAL OE TIEVTE BACIKA TUNUATA, KABE €va and Ta ornoia
QVTIOTOIXEL o€ éva amnd Ta MévTe Lno-epwTAUATA. Ol XpNoWOoTIooLPEVES PEBOSOL yIa
NV anavtnon TwV EPELVNTIKWY EPWTNHATWY, KABWE KAl TA QVTIOTOKA EVPAHUATA
aPOoLOLALOVTAL OTIG ETIOPEVEG TAPAYPAPOUG.

Mola gival Ta XapaktnploTika yvwpiopata mouv diakpivouv ta avaduopeva
KOWVWVIKO-XWPIKA Sedopéva amnd ta cupBatika xwpika dedopéva; — (Kedpalaio 2)
‘Exovtag nén Slatunwaoel To QVTIKEUEVO, TN OKOTIUOTNTA, Kat To Ttedio TNG €peuvag,
OTN CLVEXEIA EI0AYETAL KAl OPICETAL N EVVOLA TWV «KOWVWVIKO-XWPIKWY 6ES0UEVWV»
(Kedp&hawo 2), wote va cupnepdBel Ta Sedopéva exkelva yia TIG TIOAEIC TA OTTOIAL:

apAyovTal Queca A EPUESa ard TOLC AvBPWTIOUC Kal TIC 6PACTNPEIOTNTES TOUC,
TIPOEPXOVTAL ATO AvASLOLEVEG TINYES, OTIWG AICBNTAPEG, KIvNTA TNAEPWVQ, KAl HECA
KOWWVIKAG SIKTOwonNg Tou BaciCovtal otn yewypadkn BEon Tou xpnotn (geo-enabled
social media & location-based social networks),

elval ek pLoEWC MOALAIACTATA, PE TNV Evvold OTL EUTIEPIEXOLY YVwplopaTa mou
apopoLV TOOO OE XWPIKEG OO0 KAl OE XPOVIKEC IOIOTNTEC,

PTTOPOLV VA XPNOIWOTIOINBOLV yIa TNV QYWY XWPELIKWY, XPOVIKWY, KAl KOWVWVIKWY
TITUXWVY TNG AvBPWIIVNG KIVNTIKOTNTAG, SpA0cTNEIOTNTAG, KAl KOWVWVIKAG
ouvdeoIOTNTAG,

QAAG LOTEPOUY WC TIPOC TN SO Kal TN CNUACIOAOYIKY ELKPIVEIQ O OXEON LE TA
ouuBaTikG Xwplkd dedopéval.

Me Bdon Tov mapandvw opIopd, TIEPYPAGOVTAL TA XAPAKTNPIOTIKA yvwpiopaTa
TWV KOWWVIKO-XWPIKWY SES0UEVWV 08 CUYKPION PE TA CUPPBATIKA XWwPIKG dedopéva,
pEoQ and avackonnon TnG Lrapxovoag BiBAypadiag. Ta yvwpiopata autd eiva:
n rrotkiAopopgia (diversity), N kAiuaka (scale), n xpovikotnta (timeliness), n dourn
(structure), n xwpo-xpovikr avaAvon (spatiotemporal analysis), N onuaoctoAoyikr
EKPPAOTIKOTNTA (Semantic expressiveness), N aVIIMEOoWITEVTIKOTNTA
(representativeness), kai n edikpivela (veracity). To Kepdhato 2 diepeuva Tov Babud
OTOV OTI0I0 KABE €va amod TA MOPATAVW YVWPIoUATA XApaKTNPiCel kABe TOTO N
Ny 6edopévwy, eviy TApAAANAa e€eTalel TIC SLVATOTNTEG KAl TIC adLVAIEG TwV
KOWVWVIKO-XWPIKWY 6eS0UEVWY WS eVOIAUECWY (proxies) yia TNV avauon TG AoTIKAG
SLVAUIKAG. 2TN CLVEXELQ, Ol TIEPlypadOuevES SuvaTdTNTEC Kal aduvapieg BEToLY
™ Bdon yia Tov oxedlaoud Twv TIOKIAWY PEBOSWY Kal EQYAAEIWV TIOL TIPOTEIVEL N
napovoa €peuva.

QoTO00, TA KOWWVIKO-XWPIKA 6edopgva S GLVIOTOLV PIA EVIAIA KATNyopia

SeBOPEVWY PE KOIVA XAPAKTNPIOTIKA. Avaloya Je Tnv Tinyr ard tnyv oroia
POEPXOVTAL (AIOONTHPES, KIVNTA TNAEDWVA, KAl JECA KOVWVIKAG SIKTOWONC)
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pmopel va xapaktnpiCovtal arno mokia erineda nokopopdiag, KAipakag,
XPOVIKOTNTAC, OOUNG, XWPO-XPOVIKAG AVAALONG, CNUAGCIONOYIKNC EKGPACTIKOTNTAG,
QVTIMPOCWTIELTIKOTNTAC, Kal EKpPivelac. Map’ dGAa autd, vrooTtnpileTal 6T Ta
OXTW TpoavadepdUeVa yvwpiopata dev eival HOvo eyyevr) XOPAKTNPIOTIKA TwV
AvaduOPEVWY KOWWVIKO-XWPIKWY SES0PEVWY, OANG CuUVAVTWVTAL ETIONG — OF
HIKOOTEPO N PEYOAUTEQPO BaBd — Kal 0T CLPRATIKA XWPIKA Sedopéva.

To XOpaKTNPIOTIKOTEPO YVWPIoUA TIoL Sladoporolel Ta avaduOPEVA KOWWVIKO-XWPIKA
Sedopéva amnd Ta cUPBATIKY, eival O OKOTIOC YIA TOV OTIOI0 TTAPAyoVTaAL. 2€ avTiBeon
Je Ta TeAeuTaia Ta oroia apdyovtat ad hoc, Ta KOWWwVIKO-XwPIKA Sedopéva UTTOPEl
va eELTINEETOLV TTIOAD SlAPOPETIKOUG PETAED TOUG OKOTIOUG. ¢ K TOUTOU, ival
SuvaToV Va eUTIEPIEXOLY OTOoIXEIa HEPOANPIAC (biases) TEXVOAOYIKNG, YEWYPADIKNG,
SnuoypadIknG, MOAITICUIKAG ) AGAANG GLoEWC, TA Oomoia Ye TN oelpd Toug eTdPOLV OTN
OLVOAIKN TIOIOTNTA TWV Ttapayopevwy dedouévwy. O PocdIOPICUOS ETTOPEVWEG AUTWY
Twv oToxeiwv eival CWTIKAG onuaciag yia TNy epunveia Twy anoteAecpatwy, OTav
oTnNV avAAuon TNC ACTIKNC SLVAUIKAG XPNOILIOTIOIOLVTAL KOWVWVIKO-XWPIKA 6ES0UEVAL.
o va peTplacToLv aAAG Kal yia va aflotoinBolv Ta eyyevn OTolXela pepoAnpioc Twv
KOWVWVIKO-XWPIKWY 6eS0UEVWY, UE OTOXO TNV e€aywyr cadolg yVWonG OXETIKA Ue

™ Suvapikn Twv MO AewWV, Kpivetal arapaitntn n evoroinon (integration) dedopévwy
TIPOEPXOLEVWY ATTO SIAPOPETIKES TINYEG.

Mwg ta avopoloyevn Xwpika dedopéva Sdovavtal va JETACXNHATIOTOLV o€
noAvdidotata diacuvéedepéva Xxwplka dedopéva (multidimensional linked urban
data); — (KedpdaAaio 3)

Me Bdon tnv avaykn Xpnong SladpopeTIKWY TOTIWV XWPIKWY SeS0UEVWY OTNV avAALon
TWV MOAEWV KAl TWV SLUVAIKWY TOLG, SlEPELVWVTAL LTIAPXOLCEC TIPOCEYYIOEIC OE
(nthuata evoroinong (Kedpdiawo 3). H oulevén dedopevwy amod dIaPOPETIKES TINYEC
Sev eival pia amir) dladikacia. AuTtd rou kabBloTd SUCKOAN Tn dlacuvdeaon, eival

ol eyyeveig Sladopec Twy MNywv ard TIC OMoieg TipogpxovTal Ta dedopeva. Mo
CLYKEKPIUEVA, AUTEC Ol AVOIOIOYEVEIEC PTTOPET VA adOPOLV CUVTAKTIKESG (SIAdOPETIKN
KwSIKOoTIOINON), OXNUATIKES (SIAPOPETIKA SO KAl CUCXETIOEIC OVTOTATWY),
ONUACIONOYIKEC (SIaPOPETIKES epunveiec) Sladopec, 1 cuVOLACLOUG AUTWV.

Me otdxo Tn peTpiaon Twv diladopwy AVOUOIOYEVEIWY, TIPOTEIVETAL YA ueBoSoAOYIa
HETATPOTING AVOUOIOYEVWV XWPIKWY dedopévwyv oe oAudldotata dlacuvdedepeva
Xwpka 6edopéva, n onoia mapovcialetal oto Kedpdahaio 3. H yeBodohoyia akohouBel
TNV MPOCEyYyIon TNG evortoinong dedopévwy pe Baon ovtoAoyieg (ontology-based
data integration), evih map&nAa Baocifetal oe TEXVOAOYIEG ONUACIOAOYIKOU I0TOV
(semantic web) kal dlacuvoedepévwy dedopévwy (linked data). ZuVOAKE, arnoTeAeiTal
arod TPeC dIadIKaoie: (a) TNV evortoinon Xwpekwy 6edopévwy, (B) TNV apaywyn
Slacuvdedepevwv XWPIKWY dedopévwy, Kal (y) Tn dnuocievon Toug oto Linked Open
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Data (LOD) cloud. Mo avaAuTiké, n peBodoAoyia amoTeAeital anod Ta akdoAouba
BAuata:

— 2NUACIONOYIKN evOTToinon (semantic integration):
— Emioyrh mnywv 6edopévwy Kal Tipo-emegepyacia
— Avaluon kat povteAorioinon dedopevwy
— E&aywyn oxnuarog
— KaBoplopdc oTpatnylkng ovopatobesiac mopwy
— 2xedaopOG Kal avarnTuén ovtoloyiag
— E&aywyn 6pwv
— Emnavaxpnoipornoinon uploTaueVWwY OVTOAOYIWY KAl SOUNUEVWY
Ae€hoyiwv
— lepapxnon 6pwv kal COAMNYN ovtoAoyiag
— A&loAbynon ovTohoyiag
— Armekévion SedopEVWY aTnV OVTOAOYia
— Metaoxnuatiopdg oe oAudiaotarta dilacuvoedepeva dedopévar
— Anuoupyia decuwy Pe EEWTEPIKES TINYEC SESOUEVWY
— Anpooieuon oto LOD cloud:
— Anpooieuon ovtoloyiac kat RDF dedopévwy otov MNaykoopio lotd
— Tekunpiwon kat mpooacdTnTa
— Eyypadr oe katdhoyo Alacuvdedepevwv Aedopgvwy kat énuocievon oto LOD
cloud

H peBodohoyia mapovoialeTal peoa amno pia PeAETN TiepIMTWONG, N onoia
ePAQUBAVEL TN XPAON TIPAYMATIKWY SeSoPEVWY Ard TIOAATAEG TINYEG.
ZUYKEKPIUEVA, CLANEYOVTAL EVWEQ CUVOAQ XWPEO-XPOVIKWY SESOUEVWY PEYAANC
KApOKag, Tpogpxdueva amod TPEIG SNUOCIOUC OPYAVICHOUCS YeTadopwy, Ta oroia
KOAOTITOLV TO GUVOAO TOUL SIKTOOL SNUACIWY CLYKOWVWVIWY TNS ABrvag. Q¢ PEPog TNe
dladikaciag evoroinong Twv dedopévwy, oxedlaleTal KAl AVATTTUCOETAL PIA OVTOAOYIa
yla Ta dnuoola cuoTrUaTa PeTadopwy. To mapayoueva evoroinuéva dedopéva
avarTlooouyV, OTN CLVEXELQ, SECHIOUC PE EEWTEPIKES TINYEC Kal SNUocIeVoOVTAl OTO
LOD cloud.

O peTAOXNUATIOUOC QVOMIOIOYEVWV XWPIKWY SESOPEVWY O TIOALSIACTATA
Slacuvdedepéva xwpPIKA 6edopéva duvaTal va TIAPEXEL TIANPECTEPES TIEQYPADES
NG aoTKAG duvapikng. EmmAéov, n énuocieuon oto LOD cloud kabBiotd eukoAdTEPN
NV e0peon Kal aglomoinon Toug. H pebodooyia propei va avanapaxBei kal va
TPOCAPUOCTEL OTIG AVAYKEG SIAPOPETIKWY TUTIWY (KOIVWVIKO-)XWPIKWY SESOUEVWY,
ave€dptnTa ard TV Tnyn anoé Tnv oroia npogpxovtal. Kabdoov BaciCeTal oe
OVTOAOYIKA POVTEAQ, Oivel ETUMAEOV TN SLUVATOTNTA NUI-QUTOPATNC ETTAVAANYNG TNG
dladikaciac amelkdvione Twyv dedopévwy, aveEdpTnTa arnod Tov pubud avavewong,
ye TNV TipodndBeon Ta dedopéva auta va dlatnpoly To apxikO Toug oxNua (Baong
Sedopevwy).
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Me rolov Tp6TI0 prtopolV ot TToAeoS60L Kal ol popeig XapaEng aoTIKAG
TMOAITIKAG va afloroinoouy TI SuvatdTNTEG TWV MOALSIACTATWY
SlacuvoedepEVwV XwpPIKWVY SeS0UEVWV 0T XWPIKA avaAuon; — (KegpdaAaio 4)
Me okotto va evBappuvBel n euplTEPEN XPNHON SIACLUVOESEUEVWV XWPIKWY SESOUEVWV,
KABWGC Kal N eVvowPATWon tTNe mapanavw avapepopevng pebodoloyiag (Kedahaio

3) oTov aoTIKO oxedlaouo, €peuva, Kal XAPagEn AoTIKAG TIOAITIKAG, oxedlaleTal

Kal avarTtuooeTal pla oelpd anod SladikTuaka (web-based) epyaieia yia Tnv
avanapAacTacn OVTOAOYIWY Kal SlacuvdedepeEvwy dedopevwy (Keddhaio 4). Yotepa
arnod AvaokKOTINoN LTTIAPXOLCWY TIPOCEYYICEWY KAl EQYCAEIWV YIA TNV AvaTIOPACTACN
OVTOAOYIWV Kal Slacuvoedepévwy 6eS0UEVWY, EVTOTTICOVTAL Ol OXETIKO! TIEQIOPIOUOL

Ol OTTO[OL PE TN oglpd Toug BETOLY TN BAOCN yIA TOV OXESIAOUO TWV TIPOTEIVOUEVWY
UTTOAOYIOTIKWY €PYCAEiwY. Ta epyaleia autd cLVIOTOUV GTO CUVOAD TOLG TNV
nm\athoppa OSMoSys, n oroia Mapexel Eva ypadikd mepIBAroV epyaciag

(graphical user interface) yla tnv amnekovion, Teprynaon, Kat Slepedvnorn OVTOAOYIWV
Kal Slacuvdedepevwy dedopevwy. H xpron dladpopeTIKWwY anekovioewy — uTd TN
popdn duvaukwy ypadpnudtwy (force-directed graphs) — anookornei otnv evpLTEPN
LIOBETNON Kat xpron Slacuvoedeuévwy 6edopévwy, XwpPIC va anatreital €EI0IKELUEVN
YVWON OVTOAOYIKAG HNXQVIKNC ) TEXVOAOYIWV ONUAGCIOAOYIKOD 10TOU. Q¢ K TOUTOUL, TA
epyaieia eival ebKoAa TPOSRACIUA ATO YIa EVPEIQ YKAUA XPNOTWY, EUTIEIPWY KAl Ln.

Ma v meparépw LMOCTAPIEN TNG TTAPAYWYNG TIOALSIACTATWY OlIACLVOESEUEVWV
XWPIKWY 6eS0OPEVWY, QVATTTUCCETAL P OVTOAOYIQ QVWTEPOL ETUTESOL (Upper-level
ontology), n omoia TeplypAdel TN CLUCXETION PETAEL TwV SIAdOPWY CTOIXEIWV TIOU
CLVBETOLY Ta AOTIKA SikTud (Urban networks), TOGCO And TNV KOWWVIKY 60O KAl artd TN
XWPEIKA OKOTIA TWV ACTIKWY cLoTNPATWY. Me auTtod Tov TPoTo, Sivetal n duvatdTnTa
VA aTelkoVIoToUV Sedopéva arod SIAPOPETIKES TINYEG UE APKETA AVOLIOIOYEVN
yvwplopata otnv mpoavadpepOueVn OVTOAOYIa Kal va evoTtioinNBoly og éva Kal
povadikd cLVOAO SedoPEVWY, TO OToI0 cuvOLACEL TA SIAPOPETIKA yVwpiopaTa PETAED
TOUG.

H m\atdoppa OSMoSys KAvel armoKAEIOTIKN XPHON avolXToD AOYICHIKOU, VW KAl

n idla givat pooBaoiun anod Toug MeplocdTEPOUC Web browsers. ‘Evac amnd toug
OTOXOUC TNG TMAATHOPUAG eival va CUUBAMEL OTN YeDLPWON TOU XACUATOC YETAED
TWV XPNOTWY OlacLVOESEUEVWV SESOUEVIWV KAL TWV EIOIKWY GTNV OVTOAOYIKI) UNXAVIKY).
A ToV EAeYX0 TwV SLUVATOTATWY KAl TWV AdLVAUIWY TNG TIPOTEIVOUEVNG TIAATGOPUAC
€PYAAEiWV Xpnotuoroolvtal S00 OVTOAOYIEG Kal Eva GOVOAO SlacLVEESEUEVWV
6e60OUEVWY PEYANNG KAUAKAC w¢ onueia avadopdc.
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Mola yvwpiopata oxeTikd pe TN Suvapikh TnG avBpwrivng 6pactnPloéTNTAG OTO
XWPEO PTtopoLV va e€axBouv amod Ta KOIWVWVIKO-XwWPIKA debopéva; — (Kedpdahato 5)
Yotepa amnod Tnv elcaywyn vEwv pebddwy (Kedpahalo 3) Kat UTTOAOYIOTIKWY EPYOAEIWV
(Kedp&hawo 4) yia Tnv apaywyr dlacuvdedepevwv Xwpkwy dedopévwy, Ta oroia
UTIOPOLV VA TIAPEXOLY TIANPECTEPES TEPLYPADES TOU ACTIKOU TIEPIBAANOVTOC GE
oLyKpIon pe Ta Sedopéva o TIPOEPXOVTAL aTtd pia kat pévo Tinyr, e€etalovtal Ta
yvwpiopata Tou propoby va e€axBolv arod Siddopous TUTIOUS KOWWVIKO-XWOIKWY
oedopevwy (Kedpdhaio 5). EKTOG Twy dlacuvoedepevwy XWPIKWY SEG0UEVWY, LTTAPXEL
n SuvaTdTNTA AVTANCNC YVWPICUATWY avBpwrwy A Torobeoiwv and dedopeva Ta
OTT0ia MaPAyovVTAlL OTA PEOA KOWWVIKAG SIKTUWONG TIou BaciovTatl oTn YewyPadIkr
B¢€on Tou xpnotn (geo-enabled social media and LBSN data). MNapouacialeTay,
ETIOPEVWG, €va OUVOAO LEBOOWV Kal TEXVIKWVY YIA TNV €EQywyn QUTWV TwV
YVWPEICUATWV.

[Mpv and autod, To Kedpdhao 5 kataypddel SIaPOPETIKES TIPOCEYYIoEIC PETPNONG,
HOVTEAOTTIOINONG, KAl XOPAKTNPIOKOUD TOU ACTIKOU XWPEOU, JECA amd avacKomnaon

e untapxouoag BiBAoypadiac. To kedpaialo ecTiAlel OTA YWWRIOUATA eKeiva IOV
uTopoLV va avtAnBolv TOCO ard CLPPBATIKEC 00O Kal arnd avaduOUEVEG TINYEC
Sedopévwy, Kal TA OTIoIa EXOLV XPNOIUOTIOINBEL UEXOL CrUEQA YA TN LETENON KAl
HOVTEAOTTIOINCN TWV ACTIKWY CLOTNUATWY KAl TwV SUVAPIKWY TOUG. 2TN CUVEXELQ,
TEPYPAPOVTAL Ol TUTIOL TWV YWWPICHATWY EKEVWY TIOL APOPOUV OTO €IOC Kal

TNV KATAVOWr TN avBpwrivng 6pacTtnpidTNTAG OTO XWEO, TA OTIoia urmopoly va
QVTANBoLV KLPIWG AMd PECA KOWVWVIKAG SIKTOWONG, VW MAPAEANAQ TtapouaialovTal
Ol PEBOBOIL Kal TEXVIKES YIa TNV e€aywyn Toug. Ta eEaydueva yvwpiopata apopoly oe
XOPAKTNPIOTIKA TOCO TWwV dlwv Twv avBpwrwy (.x. dnuoypadikd XapaKTNEIOTIKA,
B€0n KATOIKIAG, ATOUIKEG TPOXIES Kivnong OTOV XWPO, XWwpeol SpactneldTnTac,
OLVAICONUATA KATTL.) Ol oTto{oL ETIITEAOVV pid CLYKEKPIUEVN (KOWWVIKN) SpacTneloTnTa,
OO0 KAl OE XOPAKTNPIOTIKA TwY TOTIOBEOIWV (TT.X. XPNOEIC yNG, TUTIOC SPACTNEIOTNTAC
KATT.) OTIG OTTIOIEC TTPAYMATOTIOIOVVTAL Ol eV AOyw SpacTNEIOTNTEC. TA yvwpiopata
TagivopolvTal € TECCEPIC KATNYOPIES, CLUGWVA UE TA XAPAKTNPIOTIKA TA OTToia
neptypddouyv. Ol KATNYopIES AUTES EXOLV WG €ENG: (1) KolvwVIKO-OnuoypagIkd
yvwpiouata, (2) Aeitoupyikd yvwpiouarta, (3) yvwpiouara oxeTika pe tnv Kivnon twv
QaToUWV OTO XWPO, Kal (4) Beuatikd yvwplioparta. H mpwtn katnyopia apopd tnv
EKTIHWPEVN BEON KATOKIAC EVOC ATOUOL, KABWGE €MoNC KAl yWwPIoPOTA OXETIKA PE
T0 GUAO, TO NAIKIAKS €0POC, Kal TNV €BVIKOTNTA. H 6elTEPN KATNyopia avadpepeTal
OTIC EKTIHWHEVEG XPNOEIG YNG TwV onueiwv evlladepovtod (points of interest — POIs).
H tpitn katnyopia adopd TIC TPOXIES KivnoNg KAl TOUG XWPEOLS 6pAcTNEIOTNTAG
(activity spaces) evog atopou. H TETaptn katnyopia avadgepeTal oTa cLVAICOUATA
Kal OTO TIEPIEXOUEVO TWV POSts 0Ta PECA KOWVWVIKAG SIKTLwOoNG. EmimpocBeéTwg,

oto Kedd&hato 5 mapovotdleTtal 0 TPOTOG e TOV OToio Ta Ttapanavw eEaydueva
yvwpiopata Propoly va CUPBAAAOLY OTN PETENON TNG AEITOLPYIKNC TILKVOTNTAG
(functional density) kat mokopopdiag (functional diversity) aoTIKWy MEPIOXWY, KABWG
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KAl OTN PETPNON TOL YEWYPAPIKOU E0POUC TWV ATOPIKWY XWPWV SpacTneldTNTAC 08
SLAPOPETIKA XPOVIKA SlaoTAUATA.

H evowpdtwon Twv YWWPICUATWY AUTWY 0T XWPIKA avAAuon CUPPBAAAEL OTNV
ArdKAIoN artd TIG CUPPBATIKEG TIPOOEYYIOEIG, OTIC OTIOEG Ol AvBPWTTOL KAl Ol XWPOL
6pacTnpIloToinonC Toug avTiETWITICOVTAl WG eVIaieC KAl OUOIOLOPDA KATAVEUNUEVES
TIAPAPETPOL EVTOC TIPOKABOPICUEVWY XWPIKWY EVOTATWV (TT.X. SNUOTIKA 1
nepipepelakd diapepiopata). Ot uEBodOL KAl TEXVIKEC AVTANCNG TWV ETIUEQICUEVWY
(disaggregate) yvwplopdtwy arnd KowVIKO-XwPIKA dedopeva BETel TIc BAoelg yia
TOV 0XedIAoUO EVOC LTTIOAOYIOTIKOU CUCTAPATOC, TO OTIOI0 AVOADEL TA CUYKEKQIUEVA
YVWPIoPATA KAl TIAREXEL TIEPAITEPW TIANPODOPIEG OXETIKA E TIC HETABOAEG TNG
avBpwrivng 6pacTnEIoTNTAG OTO XWEO KAl ToV Xpovo (Kedahalo 6).

Mwg eruiSpouLv ol S1aPoPEC TINYEC KOWVWVIKO-XWPIKWY SEGOUEVWV 0TV
KATtavonon Twv XwPIKWV Kal XPOVIKWYV JeTaBoAwyv TnG avlpwrivng
SpaotnploTNTag OTIC MOAELS; — (KedpaAaio 6)

‘Exovtac nén nmapouciacel peBGO0LG Kal UTIOAOYIOTIKA €QYAAEIQ yia TNV evortoinon
(Kep&aio 3) kal TV arelkovion Sladopwy TOTIWY XwPIkwy dedopévwy (Kedahalo 4),
KaBwg eTtiong Kal yla TNV AvTAnon MOKAWY YWWwPIoUATWY artd SIadOPETIKEG TINYES
KOWVWVIKO-XWPIKWY dedopevwy (Keddahalo 5), e€etaleTal WS OAQ TA TTAPATIAVW
UTIOPOLV VA CLVOUACTOUV O pia KON UTIOAOYIOTIKN TIAATPOPHA, WOTE VA EVIOXVUOOLV
TNV KATavonon TWY XWEIKWY KAl XPOVIKWY POTIRwY TNG avBpwrivng SpactnploTnTas
OTIC IOAEIC. Me auTO ToV OTOX0, OxedIAleETAl €va KAWVOTOUO SIASIKTLAKO (web-
based) cLoTNUA yla TNV ATIEIKOVION Kal SIEPELVNTIKA AVAALON TWV PETABOAWY TNG
avepwrivne dpactnpotntag (Keddhaio 6). To cvotnua e Tnv ovopaoia SocialGlass
ouvdualel dedopeva arod TIOKAA HECA KOWWVIKNG SIKTLwoNG (.X. Twitter, Instagram,
Sina Weibo, Foursquare), diktua aiobnmpwv (r.X. cuoTAPATA evToriopol Beong GPS,
KApepeg pe duvatdtnTa cuvdeong Wi-Fi), KaBwe kal CUPBATIKES TINYEG KOWWVIKO-
OIKOVOMIKWY dedopevwy. Mmopel, watdoo, va urooTtnpiEel kat 6edopéva ov
TIPOEPXOVTAL Ao TINYEG Ol oToleg dev Tep\apBAvovTal OTIC AUECWE TIPONYOUHIEVEG.
[MapAAANAQ, TO CUOTNUA TIAPEXEL PIA TIOIKINA EQYAAEIWV YIA TO GATPAPIoUA KAl TNV
anekovion SESOPEVWV.

Méow TG avaAuong PIOC TIPAYUATIKAG JEAETNC TepimTwong e€etalovTal ol
SuvaTtdTNTES TOL SIAdIKTUOKOL CUCTAPATOG, OOV AGOPA TNV KATAVONON TNG XWPIKAG
Suvauikng (Kedahaio 6). H pehétn miepimrwong Siepeuvd Tov TBavo avTiKTuTo

evog event peyadAng KAuakag (cuykekpluéva, Tou Amsterdam Light Festival 2015)
OTOV TPOTIO e TOV OTTOI0 SIAPOPETIKEC KOIVWVIKEC KATNYOPIEC avOpwIwV (KATOIKO,
UN-KATOIKOL, EEVOL TOLPIOTEG) KIVOUVTAL I ETUTEAODV CUYKEKPIUEVES SPACTNEIOTNTEC
OTOV XWPO, 0 CUYKPION UE TNV KaBnuepvh Kal wplaia pouTiva Toug TIG MepLOS0UG
TPV KAt PeTa 1o event. O oTOX0G QUTNG TNG MEAETNG elval SitTdg. TMpwTtov, adopd
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oTnV agloAdyNon Twv SLVATOTATWY KAl TIEPIOPICHWY TOU TTPOTEIVOUEVOL CUCTHUIATOC
Kal, 6e0tepov, eoTiAlel otn dlepelivnon TOL TPOTIOU PUE TOV OTIOI0 KOWVWVIKO-XWPIKA
Sedopéva poepxodueVa amo SIAPOPETIKEC TINYEC eTIIOPOVV OTNV KATAVONON TNG
XWPIKAG GLVAUIKAG. [Ma Tov okomd auTd, SleEayetal apxIka OTTIKA dlepebvnon (visual
exploratory analysis) ota §edopéva o €xouv CUAEXDE! PECW TNG TAATHOPUAG
SocialGlass. >2Tn cuVEXELQ, TIPAYUATOTIOETAl XWPIKH AUTOCLOXETION (spatial
autocorrelation analysis) 28 SladpopeTIKWY PETABANTWY TIOL adoPOLV CTNV AVEPWTTIVN
SpacTnPIOTNTA, KAVOVTAC XProN OAKWY KAl TOTIKWY OEIKTWY AUTOCUCXETIONG (OAIKOG
oeiktne Moran'’s I, Torukol 6eiktec Moran’s I,-Kou Getis-Ord G]-*) o€ ouvoLACUO PE
EAEYXOUC OTATIOTIKAG CNUAVTIKOTNTAG TWV ATTIOTEAECUATWY (EAEYXOC TUXAIOTIOINONG
KAl AvadelyaToANPias OTIC TES TWV OAKWY KAl TOTIKWY OEIKTWV).

Ta AMOTEAECUATA TNG PEAETNC TIEPITTTWONG LTTOSEIKVUOULY OTL yIa TNV AKPIBECTEPN
KATAvVONOoN TWV XWPIKWY KAl XPOVIKWY HETABOAWY TNS avBpwriivng SpactnpldtnTac
elval avaykaia n Bewpnon SIaPOPETIKWY KOIVWVIKWY KATNYOPIWY AvOPWTTWY avTi
eviaiwv MAnBucpwv (aggregate populations), 6rwg cuvnBiCetal pexpt oruepa. Emiong,
OTNV TIEPITTTWON TIOL N AVAAUON TNG XWPIKAC SUVAIKAC BAciCETAl OE KOIVWVIKO-
XWPKA 6edopéva — Kal Kupiwg oe Sedopéva TIPOEPXOUEVA ATIO PECA KOWVWVIKAG
SIKTOWONG — TOTE N TEPI0OOC CLAAOYNC AAAA KAl N TINYT ATTO TNV OTIoIa TIPOEPXOVTAL
Ta xpnotgorololpeva dedopéva TaiCouy KaBoploTiko poAo, 1biwe dowv adopd oTnv
avixveuon meavwy avwpaAlwy, ol OTIoleC e TN Celpd TOUG Uropoly va odnynoouy oe
E0PANUEVEC EPUNVEIEC TWV ATTIOTEAECUATWV.

ZLUTIEPACHUATA KAl TIPOOTITIKEG

H oAoéva kal avEavopevn Iapaywyr KOWVWVIKO-XWEIKWY SESoPEVWY ard
avadudpevec TINYEC, OMWCE Ol AIOBNTAPEG, TA KIVATA TNAEDWVA, KAl TA JECA
KOWWVIKAG SIKTOWOoNG SLvATAL VA TIAPEXEL VEEC YWWOEIG OXETIKA PE TN OLVAUIKN TWV
O AewV. TALTOXPOVA, OPWC, SNUIOLVPYEL VEEC TIPOKANCEIG YIA TOUG TIOAEOSOIOUC Kal
TOULG GOPEIC XAPAENG AOTIKNG TIOANTIKAG. Ta dedopéva auTtd xapaktnpifovral and
QVOUOIOYEVELD — AOYW TNG TIOIKIANIAG TWwV TINYWV aTtod TIG OTIoIEC TIPOEPXOVTAL QMG
Kal AOyw Twv SIAGOPETIKWY CKOTIWY TOU £ELTINEETOUV — KAl TIOAL-OIACTATIKOTNTA
(multidimensionality), kaBw¢ ot TTANPOMOPIEG TIOL EUTIEPIEXOLY UITOPOLV Va
avadEPOoVTal TAUTOXPOVA OE XWPIKA, KOIVWVIKA, XPOVIKA, KAl BEPATIKA yWwpiopuata
AvOPWTWV KAl TOTIOBECIWV. 2€ CUYKPION, HOAOTA, e TA CLPPATIKA XWPIKA Sdedopeva
Ta Oomoia Sev EVNUEPWVOVTAL TAKTIKA, Ol VEOL TUTIOL KOWWVIKO-XWPEIKWY SESOUEVWV
TPOCHEPOLY VEEC OTITIKEG OXETIKA e TOV TPOTIO HE TOV OTIOI0 TA TIOAUTIAOKQ
KOWVWVIKA KAl XWPIKA GAVOEVA TWV TIOAEWV PETABAAOVTAL HECA GE PIKPA XPOVIKA
SlaocTthuata. QoTd00, OTA APVNTIKA XAPAKTNPIOTIKA CUYKATAAEYOVTAL N CLXVA
ouyKeXLUEVN doprn, N Sipopolpevn cnuacia TNG TANPOMOPIAG TTOL EUTIEPIEXOLY,
KaBwC eTtioNc Kal N eyyevng pepoAnyia, n omoia propel va oxeTiCeTal pe (Ntrpata
SNUOYPAPIKAC, TIONTIOUIKAG, YEWYPADIKAC, TEXVOAOYIKAG 1) GAANC dLoEWG.
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H ocupBoAr Tng apoloacg SlaTPIBAC adopd oTov oxedlaopd Kal TNV AvarTuén

evOC MAQICIOU, ArOTEAOVUEVOL ATTO KAIVOTOUEC HEBOOOUC KAl UTIOAOYIOTIKA
€PYAAEiQ, TO OTTI0I0 KABIOTA IKAVY TN cLCELEN AVOLIOIOYEVWV XWPIKWY OESOUEVWY,
evw duvatal va cUPBANEeL OTNV KOAUTEEN a&loTtoinon arod Toug TIOAE0OOPOUG KAl
TOUG DOPEIC XAPAENG ACTIKNAG TIOATIKAG TwV SLUVATOTATWY TIOL TTPOCHEPOLY TA
avadudpeVa KOWVWVIKO-XWPIKA Sedopéva yla TNy katavonon Twy ndlewv. H oe Babog
KATavONon TWV XWPIKWY KAl XPOVIKWY JETABOAWY TWV TIOAEWV, Kal EIOIKOTEPA, TWV
SpPACTNPIOTATWY KAl TNG KIVATIKOTNTAC TWV AvEPWIWY, avapéveTal va SladpapaTioel
&va Kpiowo pOAO oTNV QVTILETWITION TWV TIPOKANCEWV TIOL OXETICOVTAL e TN
paydaia aoTIKOTIoINoN. H MPOocapuocTIKOTNTA TwV EBOSWY KAl UTIOAOYIOTIKWY
€PYOAAEIWV TIOL QVATTTOGCOVTAL OTNV TIAPoVoA SIATPEB KABIOTA IKavr) TNV €GAPPOYN
TOUG O€ EMIOTNHIOVIKA TTedia TIEPAV AUTOL TNG XWPIKAG ETIIOTAWNG KAl avaAuong,
Onwe eival yla mapadelypa ol LTTIOAOYIOTIKEC KOIVWVIKEG ETIIOTAWES (computational
social science), N acTIk yewypadia, n EMOTALN YEWYPADIKWY TIANPODOPIWY
(GlIScience), kai n YEAETN TNG avBpwrivng KivnTikOTNTas (human mobility). 2to
HENNOV, N €peuva Ba eTIKEVTPWOEL oTNV AVATTTUEN TIOAL-ETIMESWY KOWVWVIKO-
XWPIKWV povtelwy (multilayered urban models), kabwg emiong Kat 0TN CUYKPITIKA
HEAETN TNC SUVAUIKAG TIOAATTIAWY XWPIKWY CUCTNUATWY, TOCO € QVATITUYUEVEG
OO0 KAl 0E QVATTTUCOOUEVEG XWPES, HE TN XPHoN TWV LTIOAOYIOTIKWY EPYOAAEIWY TIOL
avarnTuxbnkav ota MAdiola autrc TG SlaTERNC. To TIPOTEIVOUEVO TIAQICIO €XEL TN
duvatéTnTa va avoiéel Tov SpdUo TPOG HIA TIOCOTIKN Slepelivnon TNG SUVAUIKAC TwWV
TIOAEWV PE TN XPNoN PIAC EVPEINC YKAUAG TINYWV 6edOPEVWY, CUPBANOVTAC £TOL OTNV
avanTuén piag veag emoTUNG yia TIC TIOAELC.
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Introduction

Ever since the establishment of urban planning in the early 20t century, and
increasingly after its institutionalization from the mid-1950s onwards, there has

been growing interest in quantitative approaches to urban phenomena (Michael

Batty, 2013b; Hall, 1988). Methods and tools were incrementally imported from
social sciences, such as urban and quantitative geography, as well as economics,
social physics, and mathematics, among others, and integrated into urban studies.
The goal was to support planners to effectively comprehend and subsequently tackle
the challenges facing cities. These challenges were traditionally pertinent to issues of
land-use location and allocation, population distribution, economic growth, as well

as to the improvement of the poor quality of life - an aftereffect of the first industrial
city. In the early days of planning, these phenomena were approached in a rather
static fashion (Hall, 1988). Forasmuch as changes in the urban environment were
insignificant, dynamic parameters were largely disregarded. Therefore, the primary
concern was about the physical structure of cities and the location of agglomerations
(Michael Batty, 2013b). Location theory provided the main theoretical pillars and
models about land uses (Alonso, 1964; Thinen, 1966), the distribution of central
places (Christaller, 1933), and the location of industries (Weber, 1909). Although

the concept of “urban dynamics” has been introduced already in the late sixties by
(Forrester, 1969), focusing primarily on economic interactions and the growth of urban
systems, the scarcity of frequently updated data posed challenges to the advancement
of the field. However, as the demographic, social, and economic dynamics of cities were
growing in unprecedented rates, the necessity for systematic planning support tools
and techniques became ever more quintessential.

In cities of the 21t century, rapid urbanization processes have resulted in a
demographic outburst that has not been experienced hitherto, in both developed
and developing countries (Townsend, 2013; UNFPA, 2007). The subsequent tip in
the ratio of urban-to-rural global populations poses additional challenges not only to
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cities, but also to planners and policy makers. To a certain extent, these challenges
are not different in nature when compared to the age-old issues of urban planning.
Economic growth, social segregation, human migration, accessibility to services,
aging populations, and transportation optimization, among others, continue to
constitute the key problems. In addition, emerging urban issues come to the fore,
relating to energy consumption, environmental sustainability, shrinking cities, and
de-industrialization. Present-day planners and policy makers are, thus, confronted
with a multiplicity of complex urban problems that change rapidly over time and,
therefore, need to address demands in shorter time spans than in the past decades.
Subsequently, the primary concern is not only on the physical structure of cities, but
also on the dynamic interactions between the various components that comprise
urban systems.

Following up on the previous observations, a contemporary notion of urban dynamics
does not only concern economic interactions and growth processes of cities, but also
pertains to human mobility, flows of individuals and goods, and the distribution of
social activity over space and time. Therefore, it simultaneously addresses spatial,
social, and temporal aspects of the urban environment. Understanding the dynamics
of human activity in cities is essential to urban planning, policy making, and
transportation planning. Quantitative measures of flows and the distribution of social
activity over space and time have potential to facilitate the characterization of urban
areas and the development of urban models (e.g. land-use transportation models,
mobility models etc.) to simulate and, possibly, predict the use of urban space by
individuals. In achieving this, conventional urban data such as census records and

travel surveys, though reliable and accurate, have limited capacities to give insights into

the spatiotemporal dynamics of cities, primarily due to their infrequent update rate.
Therefore, emerging sources such as sensors, mobile phones, and social media could
be used as proxies for human activity and mobility dynamics, in combination with
traditional sources of urban data.

Emerging Data Sources as Proxies for Urban Dynamics

The systematic use of urban data to understand morphological and functional

aspects of cities has its roots already in the late fifties, when quantitative methods
started to be applied to urban and regional studies (Kwan & Schwanen, 2009). Early
attempts in modeling cities using mathematical abstractions employed data from
population censuses, individual or household travel surveys, and economic surveys,
which comprised the only available sources to calibrate model parameters. Drawing

on location theory, one of the first systems to be mathematically represented were
transportation networks and their relation to land uses (Michael Batty, 2009; Forrester,
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1969; Hunt, Kriger, & Miller, 2005; Lowry, 1965). More recent models addressed
spatial interactions (e.g. gravity models, spatial interaction models etc.), and the
correlation between vegetation and urban coverage (e.g. Land Use/Land Cover Change
models (LUCC)) (Michael Batty, 2007; Button, Haynes, Stopher, & Hensher, 2004;
Fotheringham, Brunsdon, & Charlton, 2000). Gradually, dynamic simulation methods
were developed, based on Cellular Automata (CAs), Agent-Based Models (ABM), and
Multi-Agent Systems (MAS) (Michael Batty, 2009; Michael Batty & Torrens, 2005).
Overall, the aforementioned attempts constituted the fundamental means to simulate
and quantitatively assess the way cities function. However, the infrequent update

rate and - especially in regards to surveys - the relatively small sample, due to high
costs, in combination with the short time span covered by the data, posed significant
constraints for the exploration of dynamic urban phenomena at the disaggregate level.

In recent years though, the increasing penetration of sensor resources (e.g. GPS
trackers, RFID cards etc.) that are embedded in physical space or in handheld devices
(i.e. cellphones), in combination with geo-enabled social media (e.g. Twitter, Instagram
etc.) and location-based social networks (LBSNs) (e.g. Foursquare) provides an
emerging set of data sources about cities. The majority of data that are generated from
these new sources are tagged to space and time, have frequent update rate, therefore
addressing short time spans, and allow for disaggregation at the level of individual
location or person. In addition, data derived from geo-enabled social media and LBSNs
are further enriched with human-generated - mainly textual - information, from
which topical attributes of social activity (e.g. type of activity, sentiments etc.) may be
extracted (Ciuccarelli, Lupi, & Simeone, 2014; Noulas, Scellato, Mascolo, & Pontil,
2011; Psyllidis, Bozzon, Bocconi, & Bolivar, 2015a; Quercia & Saez-Trumper, 2014).

Although the data generated from these sources usually serve different purposes

than those pertaining traditionally to urban and regional studies, they have potential
to be used as proxies for the study of urban phenomena. More specifically, owing to
the inclusion of spatial, social, and temporal dimensions, they offer new possibilities
to the exploration of urban dynamics. This thesis defines the data produced from
emerging sources (i.e. sensors, mobile phones, geo-enabled social media, and LBSNs)
as social urban data. That is, data for cities that are spatially and temporally referenced,
are generated either directly from people (e.g. social media data) orindirectly

from people’s actions (e.g. RFID data, call detail records etc.) and, as such, are less
structured and more semantically ambiguous than traditional urban data. Further,
this thesis refrains from using the term “big data” since it is lacking a clear definition,
itis mostly focused on the volume of data, and it also constitutes a generic concept
thatis insufficient when it comes to addressing the inherent diversities of emerging
urban data types. To some extent, social urban data may qualify as “big data” for cities,
especially in regards to volume, but could also refer to relatively “small” data.
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There is already a wealth of research employing different social urban data to infer
human mobility behavior, inter- and intra-urban flows, and patterns of social activity
over time and space (see Sect. 6.1). The methods used in these studies strongly deviate
from traditional approaches to urban analysis, in order to cater to the distinctive
characteristics of social urban data. This research focuses particularly on devising new
computational methods and tools for the integration of heterogeneous social urban
data into the analysis of urban dynamics.

The diversities between the various types of sources producing social urban data
determine respectively the suitability of each source in addressing specific aspects

of the urban environment. It is therefore important that these diversities are
understood prior to incorporating social urban data into urban analytics. A framework
focusing specifically on the distinguishing characteristics of social urban data is
currently lacking.

Forinstance, sensor data such as GPS tracks and RFID records are generally
characterized by high spatial and temporal resolution, are structured by a database
schema, and have frequent update rate. On the downside, they lack any additional
semantics on the socio-demographic attributes of the persons who produce them or
the type of activity performed.

Similar limitations apply to call detail records (CDRs) from mobile phones. These
particular characteristics make both sensor data and CDRs suitable for use in the
analysis of human mobility - inter alia (Amini, Kung, Kang, Sobolevsky, & Ratti, 2014;
Bazzani, Giorgini, Rambaldi, Gallotti, & Giovannini, 2010; Calabrese, Diao, Di Lorenzo,
Ferreira, & Ratti, 2013; Gonzalez, Hidalgo, & Barabasi, 2008; Roth, Kang, Batty, &
Barthelemy, 2011; Zhong et al., 2016) - and less appropriate for the study of social
activity.

Conversely, data from geo-enabled social media and LBSNs are often tagged to specific
venues in the city (e.g. restaurants, theaters, museums etc.) and are also accompanied
by human-generated - primarily textual - content, which adds a certain level of
semantic richness. However, the fact that these types of data can be generated by
virtually everyone, deviating from the centralized and prescriptive rationale of database
management systems (DBMSs) that structure data by a predefined schema, results in
“noisy"” data streams that could hinder the process of extracting meaningful knowledge
from them.
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Drawing on the above considerations, it is clear that the employment of social urban
data deriving from a single source may yield biased conclusions and resultin a
fragmented understanding of the complexity characterizing the dynamics of cities.
Therefore, it is necessary to combine different types of social urban data together

and also to integrate them with the more reliable traditional urban data to mitigate
the structural and semantic ambiguities of the former and, eventually, derive richer
descriptions of the urban environment. This challenge calls for new approaches that
deviate from the traditional ones used hitherto in urban analytics and are able to
grapple with the dynamic nature of emerging sources of urban data. Although the
current capabilities of computational systems allow the storage, processing, analysis,
and visualization of large-scale data, integration remains a challenge. Moreover, the
majority of studies on human mobility and activity patterns that make use of emerging
data types, usually employ only one data source (Helbich, Arsanjani, & Leitner, 2015;
Lenormand et al., 2014). In order for urban planners and policy makers to capitalize on
the new possibilities given by social urban data, it is important to design new methods
and develop tools that enable the integration of data from multiple sources to extract
knowledge about the spatiotemporal dynamics of cities.

In addressing the above-mentioned challenge, the aim of this research is to design

a framework of novel methods and tools for the integration, visualization, and
exploratory analysis of large-scale and heterogeneous social urban data to facilitate the
understanding of human activity dynamics in cities.

In association with this aim, the research has the following four objectives. The first
objective is to investigate the distinguishing characteristics of social urban data and,
subsequently, identify potential and challenges of these data in the analysis of urban
dynamics. The second objective is to explore ways to create interoperable urban data
from different sources and, drawing on these, to design methods and develop tools
for data integration and interlinkage that could facilitate urban planners, researchers,
and policy makers to extract meaningful knowledge from multiple datasets. The
third objective is to investigate methods for the derivation of multidimensional (i.e.
spatial, social, functional) attributes of people and places from social urban data, and
explore how these could enrich metrics of human movement and activity. The fourth
objective is to design easily accessible computational tools that incorporate all the
aforementioned methods, allow for data integration, and facilitate the interactive
exploration of urban dynamics.
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The scope of this research focuses primarily on the dynamics of human activity in cities
and to a lesser extent on human mobility, as inferred from different sources of social
urban data. Therefore, the majority of socio-demographic attributes of individuals, as
well as the types of activity they perform are extracted (and inferred) primarily from
online social media. For the purposes of this study, the dynamics of human activity and
mobility are investigated at the intra-urban level (see Chapter 6). However, the proposed
framework can also be used for the exploratory analysis of human activity and mobility
at the inter-urban level, orin remote urban systems simultaneously (see Chapter 6).

With regard to data, the research focuses predominantly on data deriving from various
geo-enabled social media (i.e. Twitter and Instagram) and LBSNs (i.e. Foursquare),
which offer public APIs. In addition, official large-scale data coming from publicly
accessible governmental repositories are also used to illustrate examples of data
integration. Moreover, for the purposes of data interlinkage, links are established

only with external datasets that are already published on the Linked Open Data cloud
(LOD cloud) (Schmachtenberg, Bizer, & Paulheim, 2014) and can be publicly retrieved
and queried via dedicated endpoints. Therefore, the research does not incorporate
data from sensor networks and mobile phones (i.e. CDRs), as these are usually

stored in proprietary repositories and, hence, could not be acquired. However, the
tools comprising the proposed framework can be adapted to also accommodate and
integrate data from sources beyond the ones used in this thesis.

In relation to the challenge addressed by this research, the main research question is:

How to integrate heterogeneous and multidimensional social urban data into the
analysis of human activity dynamics in cities?

To answer this overarching question, the research further addresses five sub-questions
in association with its objectives:

What are the characteristics that distinguish emerging social urban data from
traditional ones?

Social urban data are only recently used in research around issues of human mobility
and activity. Their potential is scarcely exploited by the urban planning practice and
governance to date. Therefore, it is important to juxtapose emerging sources of urban
data with traditional ones to identify the strengths and weaknesses of these new
sources, prior to using them as proxies for the study of dynamic urban phenomena.

Revisiting Urban Dynamics through Social Urban Data



How to transform heterogeneous data for cities into multidimensional linked urban
data?

Afteridentifying the strengths and weaknesses of both traditional and emerging
sources of urban data in relation to city dynamics, ways to create interoperable urban
data are explored. Merging together data that are characterized by heterogeneous
data formats, schemas, structure, resolutions, and naming conventions remains

a challenge. Although there exist generic methods for data integration, thereis a

lack of a domain-specific methodology with a focus on urban analytics that further
allows for semi-automatic data integration. Therefore, domain-oriented methods for
transforming urban data from multiple sources in to linked urban data, need to be
designed.

How could urban planners, researchers, and policy makers leverage the potential of
multidimensional linked data in city analytics?

The adoption of integrated and linked data in urban planning research and practice

is currently limited. User interfaces and visualizations could facilitate and potentially
increase the consumption and employment of linked urban data in the study of cities.
To further foster engagement, the user interfaces and visualizations need to allow for
easy access, along with several possibilities for navigation and data filtering, especially
when it comes to handling large-scale linked urban data.

What types of attributes can be derived from social urban data in relation to the
dynamics of human activity?

Social urban data are multidimensional in nature, meaning that they are tagged to
space and time and, further, contain additional information which could be used to
infer attributes of the individuals who produce them. These could relate to a person’s
demographic characteristics, social ties, preferred places to socialize, type of activities
performed in these places, and sentiments about particular activities. The extraction
of these attributes is crucial for the analysis of human activity, its distribution over
geographic space, and its evolution over time.

How do different sources of social urban data influence the understanding of the
spatiotemporal dynamics of human activity in cities?

Although there exists a wealth of studies on urban dynamics employing emerging data
types from single or - less often - multiple sources, the inherent diversities of social
urban data and how these may influence the interpretation of the results are usually
overlooked. Moreover, domain-oriented tools or platforms that simultaneously enable
the collection, integration, visualization, and exploratory analysis of heterogeneous
urban data are scarce. In order to create awareness about the dynamics of human
activity, such tools need to address the diversities of social urban data and further
mitigate their structural and semantic ambiguities. In designing and developing

tools to support these processes, easy access and use, along with different types of
visualization catering to the particularities of each data source and/or the issue in
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question, also need to be considered. Moreover, the tools are necessary to be tested in
real-world use cases to not only assess their capacities, but also evaluate the knowledge
gained from different sources of social urban data.

In order to answer the research questions and to address the main aim and challenge,
a research design is developed. The latter is organized into five main parts, each one
corresponding to one of the five sub-questions formulated in the previous section.
The overarching actions undertaken in each part are namely: (1) definition of social
urban data, (2) design of integration and interlinkage methods, (3) design and
implementation of linked data visualization tools, (4) exploration of methods for
attributes extraction, and (5) design of a system for the analysis of human activity
dynamics. Combined, these five parts provide the answer to the main research
question.

The research follows a mixture of both deductive and inductive approaches, depending
on the actions undertaken in each part of the research design. In particular, the design
sequence first involves exploration of specific components of the proposed framework
(i.e. social urban data characteristics, integration and interlinkage, attributes
extraction), followed by the design of methods and tools (i.e. for urban data integration,
linked urban data visualization, visual exploration of urban dynamics) that fill in gaps
identified in the exploration phases. This sequence is not necessarily linear, meaning
that not all outputs of each part are required in the next part. Instead, the exploration
and design phases are organized around the two main components of the research
aim, i.e. data integration and analysis of human activity dynamics, and may therefore
overlap. Forinstance, the extraction of attributes from social urban data does not
necessarily follow the integration phase, but could instead be extracted from individual
sources. The following paragraphs provide an overview of the methods applied to each
part of the research design, in order to address the corresponding research questions
(Figure 1).

In the first part of the research design, the concept of “social urban data” is introduced
and defined, to encompass data for cities that are generated by emerging sources,

and their distinguishing characteristics are described. Existing literature on generic
"big data” has already recognized some characteristics that are, however, considered
typical of only large-scale datasets (Kitchin, 2014a; Mayer-Schonberger & Cukier,
2013; Zikopoulos, Eaton, Roos, Deutsch, & Lapis, 2012). Instead, in this research,
emerging sources of urban data are juxtaposed with traditional ones, to explore the

Revisiting Urban Dynamics through Social Urban Data



53

extent to which each of the identified characteristics typifies a certain data type or
source. To further define the opportunities and challenges of social urban data in the
analysis of urban dynamics, existing literature is reviewed. The identified strengths and
weaknesses (i.e. the main output of this part) are used as a general basis for the design
of the various methods and tools proposed by this research.

The second part of the research design explores first the heterogeneities of urban data
at different levels (i.e. syntactic, schematic, and semantic), and further investigates
general approaches to data interoperability from the perspective of ontology
engineering (Gomez-Pérez, Fernandez-Lépez, & Corcho, 2004), semantic web
(Berners-Lee, Hendler, & Lassila, 2001), and linked data (Berners-Lee, 2006). Driven
by the current lack of domain-oriented frameworks for data integration, a methodology
for urban data integration and interlinkage is designed. The methodology follows an
ontology-based data integration approach and accommodates a variety of semantic
(web) and linked data technologies. Overall, the methodology covers issues of urban
data integration, linked urban data generation, and publication to the LOD cloud for
further exploitation in urban analysis.

To demonstrate the applicability of the proposed methodology to urban data, a real-
world use case is presented, covering all three parts of the methodology. To conduct
the use case, nine large-scale spatiotemporal datasets are collected from multiple
sources, in particular, three public transportation organizations. As part of the data
integration process, an ontology of public transportation networks is also designed and
implemented. The resulting integrated dataset is further linked with external resources
to provide richer descriptions of the source data, and is eventually published to the
LOD cloud.

The third part comprises the design and implementation of tools that could foster

the adoption of (parts of) the methodology proposed in the previous part by urban
planners, researchers, and policy makers. Existing approaches to and tools for ontology
and linked data visualization are first explored. The limitations of related work set the
basis and requirements for the design of the proposed tools. In addition, an ontology
of urban networks is also developed, to provide a knowledge model (i.e. a framework
of formally-described domain concepts and their interrelationships, representing
real-world entities in a machine-processable format) of the interactions between the
various components comprising cities. This ontology, in combination with the outputs
of the previous part (i.e. the linked dataset and the ontology of public transportation
entities), are used as benchmark tests for the tools proposed in this part of the
research design.

The second and third part of the research design together address the challenge of
urban data integration and the generation of multidimensional linked urban data.
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The fourth part of the research design first reviews the existing literature on the
measurement of the physical urban structure and the modeling of spatial flows. It
also reviews recent attempts in integrating (online) social networks into the physical
structure of cities. Next, it investigates how these could be enriched with the new
possibilities offered by social urban data. In particular, it explores and describes
methods to extract attributes primarily from geo-enabled social media and LBSN data
that are pertinent to individuals (e.g. socio-demographic variables, social contacts,
trajectories etc.), places (e.g. function), and the interactions between the two (e.g.
activity spaces, type of activity etc.). It also addresses how these approximated
attributes help measure the functional density and diversity of urban areas, as well as
the geographical extents of activity spaces over different periods of time. The outputs
of this part are subsequently used in the design of a system for the spatiotemporal
analysis of human activity, introduced in the next part.

In the fifth part, a novel system for the visualization and exploratory analysis of human
activity dynamics is designed. Besides accommodating the methods and techniques
of the previous part, the system also incorporates the integration methodology of the
second part, to integrate emerging with traditional urban data. The system is tested

in a real-world case study that investigates how different social categories of people
appear to use urban space over time, as inferred from different sources of geo-enabled
social media. The data used in the case study come from official census records that
are integrated into the system, as well as from different geo-enabled social media and
LBSNs that are collected by the system modules.

Besides employing the visual exploration capacities of the system, a spatial analysis
on the collected data is also undertaken. In particular, global and local spatial
autocorrelation analyses are performed to investigate potential clusters (i.e. activity
patterns) in the distribution of the social activity of the different groups over space
and time. Both analyses are undertaken for 28 different variables of the collected
datain total. Moreover, statistical tests are performed to assess the significance of the
obtained results.

The fourth and fifth part of the research design together address the challenge of using
heterogeneous social urban data as proxies for the analysis of human activity dynamics.
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Following up on the research design, each one of its five parts is associated with a
chapter of the thesis. Accordingly, each chapter addresses one of the five research
questions. The answer to the main question is provided in the final chapter (Chapter 7)
of this thesis, along with a discussion on the findings of each sub-question.

Chapter 2 provides a definition of social urban data and their distinguishing
characteristics by juxtaposing them with traditional urban data. Drawing on existing
literature and various datasets that are collected for the purposes of this research,

it defines the strengths and weaknesses of each source and the data it generates,
especially with regard to representing aspects of urban dynamics.

Chapter 3 focuses on the semantic integration of heterogeneous urban data and

on processes for transforming them into multidimensional linked urban data. The
chapter first explores heterogeneities in urban data and various approaches to data
interoperability. Next, it proposes a methodology for semantic integration, linked data
generation, and publication to the LOD cloud, oriented specifically for urban analytics.
The methodology is demonstrated through a use case, employing real-world datasets
from multiple sources. The resulting linked dataset is used for testing the ontology and
linked data visualization tools, demonstrated in Chapter 4.

Chapter 4 presents a set of computational tools to potentially facilitate the adoption of
linked data in urban analytics. Prior to presenting the proposed tools, the chapter reviews
existing domain ontologies pertinent to cities and planning, as well as approaches to
ontology visualization. To semantically enrich data coming from various city sectors or
agencies, an upper-level ontology of urban networks is also presented, as a sharable and
extendable knowledge model to which different urban data can be mapped. This ontology,
along with the outputs of Chapter 3, are used as benchmark tests for the proposed tools.

Chapter 5 focuses on attributes that can be extracted from various social urban data, in
relation to individuals, places, and the interactions between them. First, the literature
on the measurement of the physical urban structure is reviewed. Next, the chapter
reviews measures and models of spatial interactions, as well as the recent work on the
integration of (online) social networks into the physical structure of cities. Following
up on these reviews, it explores new methods and techniques to extract attributes
from social urban data, to subsequently support the characterization of urban areas
and social activities. Metrics of individual trajectories, activity density and diversity,
are further revisited. The methods and techniques presented in this chapter set the
foundation for the design of the web-based system for the exploratory analysis of
human activity dynamics that is presented in the following chapter.
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— Chapter 6 presents the design of a novel web-based system that enables the

exploratory analysis of human activity dynamics in cities, by integrating emerging

with traditional urban data from multiple sources. The chapter first presents the
rationale of the system as regards the approximation of attributes of social activity in
urban space, based on the outputs of Chapter 5. Following up on this, it presents the
various components and modules that comprise the system architecture and cater to
data ingestion and analysis, semantic enrichment and integration, visualization and
exploratory analysis, and real-time monitoring of urban dynamics. An instance of the
system is put to use in a real-world case study to assess the potential and limitations of
the proposed system, and to also investigate how different sources of social urban data
could influence the understanding of urban dynamics.

Chapter 7 discusses the findings of each chapter by revisiting the research questions
formulated in the Introduction chapter. The limitations of the research are also
highlighted. In addition, the overall conclusions are presented, first by answering the
main research question and, then, by summarizing the major findings. Afterwards, the
chapter presents potential application to practice and research and, finally, concludes
with pointers to future research.

Introduction
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Defining the Characteristics
of Social Urban Data

The key role of urban data in the study of cities is acknowledged already since the
1950s, when quantitative (i.e. statistical) methods for spatial analysis began gaining
in popularity. In recent years, a considerable interest has been stimulated with regard
to data-driven approaches to urban analytics, due to the increasing availability of

new sources generating data about cities (Michael Batty, 2012, 2015; Birkin, 2009;
Fischer, 2006; Fotheringham et al., 2000; Helbich et al., 2015; Kitchin, 2015; Kwan

& Schwanen, 2009; Miller & Goodchild, 2014; Solecki, Seto, & Marcotullio, 2013).
Recent literature specifically calls attention to the shift from a data-poor to a data-rich
environment and the implications this has for spatial studies (Michael Batty, 2013c;
Kitchin, 2013, 2014a; Miller, 2010; Miller & Goodchild, 2014). The prevalent concept
used to define the emerging deluge of data sources is that of “big data”. However,

the lack of a shared definition of the concept (Kitchin, 2014a), in combination

with its broad and generic nature, and its primary focus on volume or size could be
rather misleading in the particular context of urban data. For instance, enterprise or
biological data may well qualify as “big data”, but are distinguished by entirely different
characteristics than those suitable to address aspects of urban systems. Therefore, a
new concept needs to be defined that focuses specifically on emerging data about cities
and, by determining the boundaries of scope, to further help define opportunities and
challenges with regard to urban analytics.

To address this gap, the concept of social urban data is defined in this chapter. Drawing
on this definition, the characteristics of social urban data are further described. Existing
literature to date has elaborated on the characteristics of emerging data sources, yet
attributing them only to large-scale datasets. Instead, in this chapter, emerging sources
of urban data are juxtaposed with traditional ones, either “big” or “small”, to describe
the extent to which each of the defined characteristics typifies a certain data type or
source. Existing research employing different types of emerging urban data is reviewed
to further describe the potential and limitations of social urban data in the analysis of
urban dynamics.
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The chapter is structured as follows. First, the definition of social urban data is
provided. Next, a model is introduced to classify (social) urban data according to the
source that generates them. Afterwards, the characteristics of social urban data are
defined. Based on these characteristics, social urban data are compared to traditional
ones to investigate the strengths and weaknesses of each source, with regard to the
analysis of urban dynamics. Finally, Sect. 2.5 summarizes the conclusions.

Prior to defining the characteristics of social urban data, it is necessary to first define the
concept’s scope. From the termitself, two distinctive, yet interrelated, components are
recognized, namely: the social and the urban. The following paragraphs describe the scope
of each component individually, to then provide the overall definition of the concept.

The social component implies that the data are generated by people, either directly
(explicit data generation) - as is e.g. the case with social media data - or indirectly
(implicit data generation) through people’s actions, such as via mobile phone activity
(captured in CDRs), tap ins/outs of the public transport systems (captured in RFID card
records), exchange of e-mails, GPS traces, among others (Bocconi, Bozzon, Psyllidis,
Bolivar, & Houben, 2015; Weigend, 2009).

The primary emerging sources of explicitly-generated social data are geo-enabled
social media (e.g. Twitter, Instagram, Flickr, Sina Weibo) and LBSN platforms (e.g.
Foursquare). Data derived from these sources are usually enriched semantically with
content, in the form of short texts (i.e. microposts), images, or videos that could in turn
reflect activities, feelings, opinions, or experiences of the people who generated them.
However, the interpretation of the semantics yields ambiguities that are pertinent to

a variety of contextual, cultural, technological, and demographic biases. The content
posted on social media is invaria bly tagged to time and, to a lesser extent, to space
(either with exact geo-coordinates orin relation to a specific venue or region). People
could thus act both as “human sensors” (Goodchild, 2007) who organically create data
about their activities and as interpreters who generate social content on demand (e.g.
through crowdsourcing) (Boulos et al., 2011). Further, the majority of these platforms
enable people to develop online networks of social contacts (i.e. online “friendships”),
from which social relationships could be inferred. Conversely, implicitly-generated
social data are sourced from sensors, such as GPS trackers, RFID card readers, and
cameras, as well as from mobile phones. Data generated from these sources are tagged
to both space and time, are generally well-structured, but usually lack the semantic
expressiveness characterizing data from online social media.
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The urban component indicates that the datasets under consideration pertain to cities.
This further entails that they are not only for cities, but are also generated in specific
urban settings. Urban data are necessarily geo-referenced, which means that they are
tagged to space, indicating certain locations in cities. However, as cities are not only
about locations, but are also about interactions between these locations (Michael
Batty, 2013b) that evolve dynamically over time, the urban data considered here are
also tagged to time.

By combining the two components together, social urban data refer to data for cities
that:

are generated either directly or indirectly from people and their actions;

derive from emerging sources such as sensors, mobile phones, geo-enabled social
media, and LBSNs;

are multidimensional in nature, meaning that they are spatially and temporally
referenced;

can be used to infer spatial, temporal, and social aspects of human movement, activity,
and social connectivity;

but are less structured and more semantically ambiguous than traditional urban data
(Figure 2).

The multiplicity of both traditional and emerging sources from which urban data can be
sourced, calls for a classification according to the source type. To this end, this research
adopts the tripartite information model introduced by (Devlin, 2013), which classifies
datainto three general categories: process-mediated, machine-generated, and human-
sourced. Though Devlin’s model is originally created for business data, the general
categories it identifies are quite generic and can also be used to classify (social) urban
data (Table 1).

By adapting the model to the scope of this research, process-mediated data refer
primarily to authoritative data for cities that are traditionally sourced from population
censuses, individual or household travel surveys, land-use diagrams, and real-estate
records, to name but a few.
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FIGURE 2 Schematic representation of social urban data.

Machine-generated data encompass measurements and observations coming from a
growing amount of individual sensing devices and sensor networks that are distributed

across the urban fabric. This category also refers to call detail records (CDRs) that are
sourced from mobile phone activity.

Finally, the category of human-sourced data pertains to human-generated content
(HGC) that is sourced from various geo-enabled social media and LBSNs, such as

micro-blogging posts (e.g. Twitter, Sina Weibo), pictures (e.g. Flickr, Instagram), and
videos (e.g. YouTube), among others.
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TABLE 1 Categories of (social) urban data, major data types and sources, following the classification of (Devlin,

2013).
Data category

Process-mediated

Type of (social) urban data

Census records
Migration/traveling data
Land uses

Real-estate records

Source

Census bureaus
Household/individual travel
surveys, tourism bureaus, airline
statistics

Planning organizations

Housing organizations

Machine-generated

RFID records

GPS traces

Sensor records (e.g. traffic counts,
pedestrian counts

CDRs

RFID devices

GPS trackers

Urban sensing devices
Cell phones

Human-sourced

Geo-tagged social media content
(e.g. posts, pictures, videos, check-
ins etc.)

E-mails

Crowd-sourced data

Twitter, Instagram, Sina Weibo,
Foursquare, Flickr

E-mail providers
Crowd-sourcing platforms (e.g.
Mechanical Turk)

Although social urban data are increasingly employed by researchers in performing
urban analytics, there is a lack of understanding as to what their strengths and
weaknesses (i.e. biases) of each source are, in relation to the datasets that are
traditionally used in the study of cities. To define the characteristics of social urban
data, emerging sources - as described in the definition given in Sect. 2.2 - are
juxtaposed with traditional ones, following Devlin’s classification (see Sect. 2.3),
to investigate the extent to which each characteristic typifies a specific source. An

additional objective of this juxtaposition is to identify the strengths and weaknesses of
each data type - focusing on one characteristic at a time - in understanding how cities
function over time. Drawing on existing literature and research employing different
types of emerging and traditional urban data to address aspects of urban systems and
dynamics, the following paragraphs define eight characteristics and examine what
distinguishes emerging social urban data from traditional ones.

The eight characteristics that are defined here, are namely: diversity, scale, timeliness,

structure, spatiotemporal resolution, semantic expressiveness, representativeness,
and veracity.
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Diversity

The diversity of urban data is a multifaceted characteristic, in particular, of a threefold
nature. In the first place, it addresses the different sources that presently generate data
for cities. In the second place, it refers to the variations in terms of format, quality,
resolution, structure, and semantics. In the third place, pertaining specifically to
geo-enabled social media and LBSNSs, diversity refers to the different demographics of
people who contribute content to these platforms (see also Chapter 6).

With regard to the first facet of diversity, the current availability of multiple sources
from which data about cities can be derived is both an opportunity and a challenge for
urban planning and policy-making. The opportunity lies in the possibility to employ
data from different sources simultaneously. Although this could help overcome the
bias of a single source (e.g. incompleteness, small sample coverage, lack of time tags
etc.) and potentially provide richer descriptions of urban systems and human behavior,
it also raises significant problems of interoperability and integration. These problems
relate to the second facet of diversity, i.e. the different file formats, resolution,
structure, naming conventions, that hinder the fusion of data from multiple sources
(see also Chapter 3).

Traditional process-mediated urban data comprise many different types and continue
to be the most reliable sources of information with regard to spatial analytics and
planning (Michael Batty, 2013c). They are essentially characterized by their relatively
high quality in terms of accuracy, completeness, validity, and general truthfulness of
the content (Psyllidis et al., 2015a). Although the majority of these data increasingly
come in structured digital formats (e.g. shapefiles, tabular data in the form of logistic
sheets or comma separated values etc.), there still exist several authoritative data in
formats that are not machine-readable (e.g. images, raster maps etc.). Diversity is
further intensified by the existence of disparate data silos, in which the majority of
authoritative urban data are stored. The use of different naming conventions, models,
and schemas across sectors poses several challenges to interoperability (Métral,
Falquet, & Cutting-Decelle, 2009; Psyllidis, 2015).

Following up on the diversities of traditional (process-mediated) data, the role of
diversity in social urban data is examined.

At present, sensors and sensor networks are embedded in the physical infrastructure
of cities (e.g. road networks, water management systems, energy consumption
monitoring systems, street lighting, smart grids etc.), producing a proliferating
amount of machine-generated data (Verdone, Dardari, Mazzini, & Conti, 2008;

Vinyals, Rodriguez-Aguilar, & Cerquides, 2008). The streams of data they generate (i.e.

measurements and observations) provide information about pedestrian movement
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and transport flows, environmental conditions, air quality, electricity usage, weather,
and sound levels, to name but a few (Fernandez, Marsa-Maestre, Velasco, & Alarcos,
2013; Psyllidis & Biloria, 2014). Therefore, they constitute invaluable sources of
information, in regards to the inner-workings of city infrastructure. However, the
diversity of sensing devices leads subsequently to the generation of heterogeneous
measurements, observations, and data representations, which pose challenges to
interoperability and compatibility (Compton et al., 2012).

Aside from distributed and embedded sensing devices, machine-generated data
further encompass call detail records (CDRs), sourced from mobile phone devices.
Though depending on the mobile phone provider, these records usually come in tabular
formats, containing attributes about the type of activity (i.e. phone call, SMS etc.), caller
and receiver IDs (encoded), caller and receiver location, timestamp, and total duration
(Blondel et al., 2012). Therefore, data from mobile phones do not present significant
diversities. Yet, the nature of the attributes they contain enables them to be used as
proxies for individual human movement (Calabrese et al., 2013; Gonzalez et al., 2008),
mobility patterns in and across cities (Amini et al., 2014; Grauwin, Sobolevsky, Moritz,
Godor, & Ratti, 2015; Kang, Ma, Tong, & Liu, 2012), and human activity (Diao, Zhu,
Ferreira, & Ratti, 2015; Wang, Kang, Bettencourt, Liu, & Andris, 2015).

Human-generated data derived from geo-enabled social media (e.g. Twitter, Instagram,
Flickr, Sina Weibo) and LBSNs (e.g. Foursquare), constitute increasingly important
sources of information about the interaction of people with the urban environment
(Balduini, Bozzon, Valle, Huang, & Houben, 2014; Cranshaw, Schwartz, Hong, &
Sadeh, 2012; McKenzie, Janowicz, Gao, & Gong, 2015; Psyllidis et al., 2015a; Steiger,
Westerholt, Resch, & Zipf, 2015). The proliferation of these sources has been made
possible firstly through the growing penetration of broadband connection, secondly
through the advent of the Social Web (otherwise called Web 2.0), and lastly through
the advances in database systems, which currently allow the decentralized production
of datasets that do not adhere to particular models or schemas. Data crawled from
these particular sources are usually tagged to space (either with exact geo-coordinates
orin relation to a specific venue) and time, and are further enriched with semantic
information about the users who generate them (e.g. age, gender, online social
contacts etc.), the places of activity (e.g. geo-location, category, popularity etc.), and
the type of activity performed (e.g. topical information extracted from microposts,
sentiments etc.) (Jiang, Alves, Rodrigues, Ferreira, & Pereira, 2015; Noulas et al., 2011;
Psyllidis et al., 2015a; Quercia & Saez-Trumper, 2014; Shelton, Poorthuis, & Zook,
2015). Owing to these characteristics, human-generated data have capacity to be used
in the study of spatiotemporal urban dynamics.

What particularly distinguishes human-generated data from other types of social urban
data, is that diversity does not only refer to differences in format, quality, or structure,
but also implies differences in the population demographics across platforms
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(Yang, Hauff, Houben, & Bolivar, 2016). These intrinsic diversities may lead to biases
of contextual (e.g. type of activity, role of individual users etc.), geographic (e.g. urban
or rural locations), cultural (e.g. popularity of social media in different countries),
demographic (e.g. age, gender, socio-economic status etc.), or technological (e.g.
penetration rate) nature. Although these intrinsic diversities and biases pose several
challenges to the interpretation of human-generated social urban data, they also have
potential to provide richer descriptions of activities, if accommodated in the study of
urban dynamics (see also Chapter 6).

Scale refers to the size or volume of data. This particular characteristic is widely
considered the prevalent one in the contemporary data landscape, especially in existing
literature on “Big Data” (Boyd & Crawford, 2012; Dutcher, 2014; Kitchin, 2014b;
Laney, 2001; Mayer-Schonberger & Cukier, 2013; McGovern, 2015). Although the
current data supply is indeed rather voluminous, the issue of size is definitely not new,
especially with regard to urban data (Michael Batty, 2013a; Miller & Goodchild, 2014).
In fact, the characterization of data as either large- or small-scale is to a great extent
dependent on the processing capacities of the available computational resources.
Thereby, what nowadays is considered to be “large-scale data”, it could possibly be
characterized as rather small-scale in the near future.

The following paragraphs describe the characteristic of scale and investigate the extent
to which it constitutes an influencing factor of both traditional and social urban data.

Although the scale of traditional process-mediated data is generally considered to be
rather small - compared, forinstance, to real-time streams from sensors and social
media - certain certain types can be rather voluminous (Michael Batty, 2015). For
instance, complete population censuses may, in some cases, comprise hundreds

of millions of individual records and, therefore, processing with conventional
computational techniques could prove to be cumbersome (Miller & Goodchild, 2014).
However, as the update rate of population censuses is rather infrequent (usually once
every ten years), the dataset will not increase in size, before the next census. Similarly,
data about flows of people (e.g. migration, commuting), goods, and information are
usually large in scale, yet their size remains unchanged for a long period of time, as
travel and migration surveys are conducted rather infrequently.

Scale is a distinguishing characteristic of social urban data, either machine- or human-

generated. Data generated from sensors, mobile phones, and social media usually
comein large volumes, are updated in (near) real time and, therefore, require new
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methods and tools to be handled, processed, stored, and analyzed. Nevertheless, larger
volumes of data do not necessarily imply better quality data (Boyd & Crawford, 2012).
In addition, although access to large-scale social urban data is increasingly becoming
available, full access to the entire data stream is usually restricted. For example, in the
case of mobile phone data, providers usually grant access only to a limited sample of
CDRs at a high cost. Similarly, in certain social media platforms such as Twitter, access
to the entire set of public microposts (called “firehose”) is only allowed at a high cost.
Therefore, the majority of Twitter data stem from the publicly-available “Streaming
API"” that allows access to a limited sample (i.e. approximately 1%) of the entire feed
(Morstatter, Pfeffer, Liu, & Carley, 2013). Moreover, access to various social media APIs
are generally subject to change, according to changes in the data sharing policies of the
social media platforms.

Timeliness

Timeliness refers to the update frequency of a data source. Traditional process-
mediated urban data (e.g. population census, travel surveys etc.) are generally
characterized by low update rates, ranging from several months to decades. On the
contrary, emerging social urban data are transmitted continuously and can further be
collected in (near) real time. In general, timeliness closely relates to the characteristic
of scale, since the higher the frequency update the higher the volume of data produced.

The high update frequency of emerging social urban data enables observations

on shorter time intervals than it has been possible with traditional ones

(Michael Batty, 2013a). Therefore, the employment of social urban data in city
analytics entails a deviation from the traditional understanding of urban phenomena.

Urban planning, research, and policy-making have hitherto been dealing with long
time periods (e.g. years or even decades). This, of course, was a direct consequence

of the then available datasets that were updated rather infrequently. In principle,

the collection methods of most traditional urban data, which involve questionnaires,
surveys, and on-site observations, allow for very limited updates and are rather
demanding in term of - human or other - resources. Therefore, traditional urban data
become available only every few months, years, or even decades. On the contrary,
streaming social urban data open new avenues in understanding how cities function
in short time horizons. In some sense, this implies a high degree of immediacy to the
analysis and planning of urban space, marking an entirely new condition for planners,
researchers, and policy makers (M. Batty et al., 2012).
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Provided that real-time social urban data are invariably collected, it could be
anticipated that a large amount of data for cities will be available in the future at very
fine temporal resolution. This could mark an entirely new condition for urban planning
and policy-making, in which different city stakeholders will have at their disposal
datasets that would cover a very broad range of timescales, instead of just a limited
sample of them.

Structure

The characteristic of structure refers to the way data are stored and organized. Although
traditional urban data are generally well-structured, social urban data are characterized
by several intrinsic variations. In particular, machine-generated data (i.e. sensor
records and CDRs) are generally better-structured and easier to process than human-
generated data from social media, as the latter are created spontaneously and, as such,
are unstructured.

In general, data can be classified into structured, semi-structured, and unstructured.
Structured datasets are accompanied by a clearly defined model, which not only
describes the different data types (e.g. Booleans, characters, integers, arrays, lists,
frames etc.), but also the relationships between them. Further, it determines the
way in which they will be stored and accessed. Thereby, such datasets can be better
understood, processed, and queried by computing systems. Traditionally, structured
datasets are stored and managed in Relational Database Management Systems
(RDBMSs - e.g. MySQL, PostgreSQL etc.).

On the other hand, unstructured data do not follow specific models and, therefore,
require additional handling to be further read and processed by computing systems. The
majority of real-time streams generated from social media resemble unstructured data.

At the intersection of the two previous categories lie the semi-structured data. The latter
do not follow a specifically defined model, but do contain attributes, metadata, and other
markupsin a structured format (e.g. XML, JSON etc.). For example, an image - which
individually constitutes an unstructured data object - accompanied by metadata, such as
geo-location (i.e. latitude and longitude coordinates), timestamp, and keywords about its
contentin a structured format, resembles a semi-structured data object.

Process-mediated authoritative data usually comprise a mixture of the three
aforementioned categories. A large number of open municipal data is increasingly
becoming available in machine-readable and non-proprietary formats (e.g. CSV). In
addition, the majority of transport data are generally well structured, yet different
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models may be used depending on each sector’s needs and usage purposes. However,
there still exists a large number of unstructured authoritative data such as raster maps,
aerial photos, and other analog documents.

Data streams from sensing devices and sensor networks are generally characterized

by heterogeneous device types, communication protocols, and models (Barnaghi,
Wang, Dong, & Wang, 2013). Sensor data are well-structured, accompanied by several
attributes and markups pertinent to the specific measurements and observations
(Golab & Ozsu, 2003). Recent advances in relational data stream management
systems (RDSMSs) and NoSQL databases (e.g. MongoDB, Apache Cassandra, HBase
etc.) have played an important role in enabling the storage and performance of
different operations on streaming data.

On the other hand, human-generated data from social media are highly unstructured,
consisting of microposts expressed in natural language (e.g. Twitter, Sina Weibo),
pictures (e.g. Instagram, Flickr), videos or sound files. The structural heterogeneities
characterizing social urban data forms significant barriers to interoperability and,
therefore, to integration and interlinkage (see Chapter 3).

Spatiotemporal Resolution

Drawing on what has been discussed already, emerging social urban data cover a wide
range of spatial and temporal scales. Different data sources are characterized by diverse
spatiotemporal granularity and, therefore, the data they produce are at different levels
of detail (LoD). For instance, a geo-referenced record referring to the location of a
specific venue in a city may include, besides the latitude and longitude coordinates,
metadata about its address, which in turn contains attributes such as street name,
number, floor, postal code, area, city, state, country, and others. If the aforementioned
attributes constitute individual fields - instead of being aggregated into a single field
(e.g. column) - the respective data object is considered fine-grained.

Typically, traditional urban data are aggregated into predetermined spatial units

such as districts, neighborhoods, or municipalities. These aggregations into arbitrary
spatial divisions unavoidably lead to the long-lasting issue of spatial analysis, called
the Modifiable Areal Unit Problem (MAUP). MAUP refers to the interpretation biases
that could result from the aggregation of spatial data into various predefined districts
(modifiable areal units) (Openshaw, 1984). Changing the scale of the districts (i.e. the
size of areal units) will automatically change the data aggregation into them, which
will eventually lead to a different spatial distribution of the studied variables, thus
influencing the observations and the ways in which urban phenomena are understood.
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Although contemporary geo-referenced social urban data allow for spatial analysis

at the disaggregate level (e.g. individual locations), MAUP remains a significant
challenge when it comes to the characterization of urban areas, where disaggregate
data (e.g. point-based observations) need to be aggregated into arbitrary spatial units,
determined by the person who performs the analysis (Steiger et al.,, 2015).

As regards sensor data, the spatial and temporal resolution is dependent on several
parameters, such as the device features (i.e. the measurement capacity), the Field of
View (in the case of remote sensing data) and the spatial coverage (when it comes to a
sensor networks).

In the case of geo-referenced human-generated data from social media the LoD of
the metadata differs substantially across platforms. For instance, in Sina Weibo - a
popular social media platform to Chinese populations, equivalent to Twitter - enables
metadata about the device type that generated the micropost to be crawled (e.g.
cellphone type, desktop or laptop type etc.) (Q. Gao, 2013). This high LoD is not found
in other popular platforms, such as Twitter, Flickr, and Instagram. However, high
spatiotemporal resolution also raises issues of privacy (see Chapter 7).

§ 2.4.6 Semantic Expressiveness

Extracting meaning from social urban data is crucial for understanding the nature

of social activities and their dynamics. This could lead to more qualitative insights
into how cities function and, also, how they are experienced by people. Thus, besides
the spatial and temporal attributes, the semantics of urban data play a significant
role, in this regard. In order to (semi)-automatically extract the meaning of (large-
scale) data, new specialized methods are required, leveraging semantic (web)
technologies, knowledge representation tools, and linked data principles that will
further be elaborated in Chapter 3. However, not all social urban data types are equally
characterized by semantically rich content. Social urban data are in fact distinguished
intrinsically by different degrees of semantic expressiveness.

The majority of traditional urban data are semantic by design. That is because they

are created ad hoc and, therefore, contain several accompanying attributes that add
reliable contextual information to each data record. For example, household travel
surveys contain comprehensive information about trip-making activities at the
disaggregate level such as the travel origin and destination, the purpose, the travelling
time, as well as demographic and socio-economic attributes of the surveyed individuals
or households (Zhong et al., 2015).
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On the other hand, data from mobile phones (CDRs) and sensor resources present
limited semantic expressiveness. For instance, as it was mentioned in Sect. 2.4.1,

the majority of CDRs contain information about the start and end times of a call, the
total duration, the geo-locations of callers and receivers, the type of interaction (e.g.
phone call, SMS etc.), but they lack any contextual information. The same applies to
sensor-generated data. Although there is a wealth of research on deriving information
about human mobility and social interactions from mobile phone data (Andris, 2016;
Calabrese, Smoreda, Blondel, & Ratti, 2011; Gonzalez et al., 2008; Ratti, Frenchman,
Pulselli, & Williams, 2006; Toole, Herrera-Yaque, Schneider, & Gonzalez, 2015; Wang
etal, 2015), the semantic quality of both CDRs and sensor data is poor.

In contrast, the content of human-generated data from social media has potential

to reveal valuable contextual and topical information about the users and the type of
activities they perform (Jiang et al., 2015; Llorente, Garcia-Herranz, Cebrian, & Moro,
2015; McKenzie et al., 2015; Psyllidis et al., 2015a; Quercia & Saez-Trumper, 2014).
Although social media data possess a high degree of semantic expressiveness, the
extraction of reliable knowledge about the dynamics of human activity is hampered by
several cultural, personal, geographical, technological, demographic, and contextual
biases that could result in ambiguous interpretations (Mislove, Lehmann, Ahn, Onnela,
& Rosenquist, 2011; Olteanu, Castillo, Diakopoulos, & Aberer, 2015; Yang et al., 2016).

Representativeness

A crucial aspect in the use of social urban data as proxies for urban dynamics is to
examine how representative these sources are, with regard to different population
groups and their activities. However, the issue of representativeness is not new, as
regards urban data in general. In spatial analysis and planning the use of data derived
from sample populations is rather common. In the past, the limited storage and
processing capacities of early computing systems posed several constraints to the
analysis of large-scale urban data. Thereby, sampling strategies were developed in
order to handle the data volumes (Miller & Goodchild, 2014). Such strategies are still
in use nowadays for the collection of urban data (e.g. surveys, on-site observations
etc.). Defining a sample is subject to many parameters that influence how well
certain population groups are represented, as well as the extent to which generalized
conclusions can be reached.

With the advent of cloud computing systems that allow for distributed storage and
processing of large data volumes on computer clusters, it is currently possible to
analyze entire populations, or considerably bigger samples than it has been possible
hitherto (Mayer-Schonberger & Cukier, 2013). In this way, traditional large-scale
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urban data, such as complete censuses, real-estate records, transport data, and
datasets about interactions (e.g. migration, interpersonal relations etc.) can be handled
more efficiently.

As regards social urban data, the degree of sample coverage is dependent on the
source. Sensors or sensor networks cover limited regions in a city or represent specific
population groups (e.g. those who use public transport to commute). In the case of
mobile phone data, sample coverage depends on the penetration of the providerin
question. In existing research that makes use of CDRs to study human mobility and
interactions, data usually derive from a single telecom provider, raising question about
the representativeness and the generalization of the obtained results (Goodspeed,
2013). In addition, calls made through online platforms (e.g. Skype, Viber, Whatsapp
etc.) are hardly ever considered.

Similarly, social media are still used by a limited - yet perpetually increasing - amount
of people. As a consequence, the data they generate represent, by definition, a sample
of population groups with specific demographics. Usually, they portray younger
populations, people from more affluent regions with access to broadband services,

or certain ethnicities based on platform popularity (e.g. Twitter is popularin Europe,
North America, and Australia, but not in China, where Sina Weibo is used instead)
(Hargittai, 2007). As a result, a number of population groups are over-represented
while others are completely excluded.

In addition, as mentioned previously, not all social media streams are publicly available
for crawling. Platforms such as Facebook, do not offer public APIs, whereas Twitter
allows only a small sample of public microposts to be crawled for free, through the
"Streaming API". From these publicly available streams, only small amount consists

of geo-referenced data. According to (Leetaru, Wang, Cao, Padmanabhan, & Shook,
2013) around 1.4% of microposts are tagged with a place indicator and an exact geo-
location. Intrinsic demographic diversities across social media platforms (Mislove et
al., 2011) and different usage patterns play a significant role in the representativeness
of the collected data. The disregard of these diversities and sampling limitations in
analyzing urban dynamics, is a major threat to validity and generalization.

Veracity

Veracity relates to the trustworthiness of the information included in the data.

In understanding how cities function, traditional process-mediated data are still
considered the most reliable sources of information about cities and socio-economic
activities (Michael Batty, 2013c). They are generated to serve a specific purpose,
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therefore resulting in high quality data. Machine-generated data are also characterized
by high levels of reliability, although the accuracy of the data is dependent on the
resolution of the sensing device, that is, the precision with which the measurements
are made.

Unlike the aforementioned data categories, social media data are rather ambiguous
sources of information, owing to their unstructured nature and the several biases they
contain. Identifying the degree of veracity in social media data is a challenging issue.
Aspects that could affect the trustworthiness of the data are pertinent to language, user
behavior, context, periodicity, and personal biases (Derczynski & Bontcheva, 2014).

An example of data ambiguity may refer to the collection period of social media data.
Large-scale events or celebration taking place in a city could create data anomalies and,
therefore, result in false interpretations of the observed activity patterns, if the events
are neglected in the data analysis (see also Chapter 6).

Toimprove the level of veracity in social media data, the strategies of crowdsourcing
and human computation are increasingly gaining in popularity. These two approaches
rely on the role people can play both as producers and as interpreters of data (Balduini
etal, 2014; Boulos et al., 2011, Burke et al., 2006). Whereas people create data on
social media in an organic fashion, the information generated through crowdsourcing
and human computation procedures is entirely on demand. Crowdsourcing allows
general public and professionals - through the use of particular platforms and/

or devices - to contribute their own additional information, metadata, and content
interpretations (by e.g. annotating maps with comments, photos, videos etc.; by
sharing information about weather phenomena; by collectively editing articles, as is
the case of Wikipedia etc.). Human computation, on the other hand, relates to requests
sent by a particular piece of software to (a group of) people, so as they evaluate,
comment, or contribute to an issue in question.

In the context of urban data, in particular, the most prominent and widespread
application of crowdsourcing relates to the collective contribution of volunteered
geographicinformation (VGI) to platforms such as Google Earth and OpenStreetMap.
However, certain biases are still present to some extent. As is the case with social
medjia, the majority of VGI contributors appear to originate from more affluent regions,
that is, places with access to broadband services, higher technology penetration levels
etc. Subsequently, these areas are characterized by an abundance of information,
whereas in less affluent regions information is still scarce (Goodchild & Li, 2012;
Haklay, 2010; Townsend, 2013). A potential way to minimize the level of bias is by
evaluating different users on the basis of their contributions and their respective levels
of accuracy (Goodchild & Li, 2012; Miller & Goodchild, 2014). Nevertheless, for both
crowdsourcing and human computation, irrespective of the techniques applied, the
most challenging factor is to provide incentives for user engagement.
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TABLE 2 Traditional and emerging social urban data: overall comparison of characteristics.
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EMERGING Machine-generated

SOCIAL URBAN DATA (e.g. RFID records, GPS
traces, CDRs etc.)

Human-sourced
(e.g. social media data)
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This chapter provided a definition of social urban data and described their
distinguishing characteristics by juxtaposing them with traditional ones. Further,
itinvestigated their strengths and weaknesses as sources for the analysis of urban
dynamics (Table 2), by reviewing existing literature. Arguing that the concept of "big
data” is insufficient to address the specificities of emerging data for cities, it introduced
the concept of "social urban data” and defined its scope.

Social urban data do not comprise a unified category of data with common
characteristics. In fact, according to the source that generates them (i.e. sensors,
mobile phones, geo-enabled social media, and LBSNs), they may be characterized

by varied levels of diversity, scale, timeliness, structure, spatiotemporal resolution,
semantic expressiveness, representativeness, and veracity. However, it is argued that
the eight aforementioned characteristics are not only inherent to emerging social
urban data, but are also present - to a greater or lesser extent - in traditional data
for cities.
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The most distinguishing characteristic that differentiates emerging social urban data
from traditional ones, is the purpose guiding their generation. Although conventional
data for cities are created ad hoc, social urban data are generated organically and serve
a variety of purposes. As such, they contain contextual, technological, geographical,
demographic, and cultural biases, which in turn affect the overall data quality. In using
social urban data as proxies for the analysis of urban dynamics, the identification of
these biases is of critical importance to the interpretation of the obtained results.

To leverage the intrinsic biases of social urban data and to extract unambiguous
knowledge about the dynamics of cities, the integration of data from multiple sources
is, therefore, deemed necessary.
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Transforming Heterogeneous Data

for Cities into Multidimensional
Linked Urban Data

In measuring and analyzing the complex dynamics of urban systems, it is required
that data from more than a single source are considered in conjunction. However,

the combination of heterogeneous data is hardly straightforward. What makes the
assembly cumbersome, is in fact the inherent diversities of the sources from which
the data stem. More specifically, these heterogeneities may pertain to differences

in syntax (i.e. different data encoding), schemas (i.e. different structure and entity
relationships), semantics (i.e. diverse contextual interpretations), or combinations of
these three aspects (Cruz & Xiao, 2009). As a matter of fact, the diversities of various
datasets are proportional to the amount of sources. Thereby, it comes as no surprise
that contemporary urban analytics are faced with increasingly heterogeneous data,
forasmuch as the range of available sources that provide information about the city
also expands rapidly. Chapter 2 specifically addressed this particularissue. Thus, the
challenge is to enable the fusion of different urban data by alleviating the various
heterogeneities. In other words, it is essential to explore data integration methods and
techniques, so as to allow for complex urban models and simulations to be generated,
and for demanding analytical questions to be answered.

The process of generating interoperable data requires that all three types of
heterogeneity (i.e. syntactic, schematic, and semantic) are addressed. Nevertheless,
the majority of existing standards for data integration concentrate on a single type. In
particular, standards for syntactic interoperability provide guidelines for representing
data in a common way and format. Conversely, schematic interoperability methods
engage in matching different schemas, which are mainly used for describing

how records in a database relate to one another. In this regard, they are mostly
appropriate for highly structured datasets. As a consequence, syntactic and schematic
interoperability standards are ill-suited to dealing with unstructured data, such as
those generated from social media.
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On the other hand, semantic interoperability efforts focus on conceptual models for
building consensus among different disciplines that use varied naming conventions to
describe the same data record or real-world entity. This is particularly crucial for urban
analysis and planning, as not only the combination of heterogeneous data is required,
but also several disciplines from various scientific domains are involved, making use
of different terminologies. Semantic analysis is significant for interpreting the content
of social urban data and for assessing its relevance to real-world urban dynamics.
Concomitant with the semantic integration efforts are the recent advances in the
Semantic Web and Linked (Open) Data. These endeavors focus on providing machine-
processable descriptions of heterogeneous datasets, while further supporting their
publication, retrieval, and reuse on the Web (Domingue, Fensel, & Hendler, 2011).
Therefore, they open up new possibilities in studying simultaneously the relations
between different aspects of urban systems.

This chapter focuses on the integration of heterogeneous urban data and on processes
for generating links with external datasets. It first explores heterogeneities in urban
data and outlines various approaches to data interoperability. Besides presenting the
various standards for common formatting and representation, it further focuses on
existing methods and technologies for semantically annotating urban data to allow

for shared interpretation by both humans and computational systems. Driven by the
current lack of domain-oriented frameworks for data integration, the chapter proposes
a methodology for urban data integration and interlinkage. The designed methodology
follows an ontology-based data integration approach and accommodates a variety of
semantic (web) and linked data technologies. The methodology addresses issues of
urban data integration, linked urban data generation, and publication to the Linked
Open Data (LOD) cloud for further exploitation in urban analytics.

Finally, the proposed methodology is demonstrated through a use case, employing
real-world, large-scale spatiotemporal data from multiple sources. In particular, it
employs data from three different public transportation organizations that cover the
entire transport network of the city of Athens, Greece. The data contain information
about the origin and destination locations, stop times, daily, monthly, and yearly
schedules, route descriptions, and geospatial features of routes and stop points,
among others. Following the proposed methodology, the resulting integrated dataset is
published to the LOD cloud and linked to other available geo-data on the Web.
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In Chapter 2, and specifically in Sect. 2.4.1, the diversity of data for cities has been
described. Sensors, mobile phones, and social media have recently been placed next to
the traditional sources used in urban analysis and modeling. Individually, each of these
sources generates data with specific capacities, which can be exploited for measuring
orinferring aspects of the urban environment. Reasonably, the larger the amount of
data from different sources combined together, the wider the range of city aspects that
can be covered. But to achieve such fusion, the inherent differences characterizing each
data source have first to be overcome. These differences may relate to format, unit of
measurement, level of accuracy, scale, degree of veracity, and naming conventions, to
name but a few. In general, data heterogeneities can be classified into three categories:
(a) syntactic, (b) schematic, and (c) semantic (Table 3).

Syntactic heterogeneity primarily refers to differences in file format or encoding.

It constitutes the most basic and frequent type of heterogeneity among the three
categories. In tabular representations of data (i.e. data of different types organized
into rows and columns), a difference in syntax could also imply the use of different
value separators (e.g. commas, semi-colons etc.) in tuples (i.e. organized sets of
values) included in the datasets. To overcome this discrepancy and to further achieve
interoperability across systems, the most common way is to convert the data in
question into a shared structured format and/or representation, using standards.
Such standards have been developed by organizations dedicated to spatial data
interoperability, such as the Open Geospatial Consortium (OGC), or others focusing
on data exchange over the Web, such as the World Wide Web Consortium (W3C).
The majority of these standards concern the development of machine-readable data
formats, such as the XML (eXtensible Markup Language), JSON (JavaScript Object
Notation), the KML (Keyhole Markup Language), or the GML (Geography Markup
Language) which allow datasets to be exchanged between computing systems or over
the Web.

Schematic heterogeneity relates to the use of different schemas among structured
datasets, stored in database management systems (DBMSs). Generally, a schema
determines the objects that are allowed to be stored in a database. In the case of
relational databases, schemas further specify the relationships between these objects.
Thereby, schematic diversities can solely be encountered in structured datasets.
Sensor data and CDRs constitute exemplary cases hereof. Frequently, schematic
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heterogeneities refer to the use of different naming conventions to describe the same
piece of information, which makes them analogous to semantic heterogeneities. In
integrating datasets characterized be different schemas, the prevailing solution to date
is that of schema matching. The latter entails the identification of semantically related
objects, which are subsequently matched. Besides the differences in object definitions,
other challenges include diversities in the types or units of measurement, at the data
level. In the specific context of web-enabled sensor resources and networks, the Sensor
Web Enablement (SWE) initiative by OGC s particularly dedicated to tackling such
heterogeneities (Botts, Percivall, Reed, & Davidson, 2007).

Lastly, semantic heterogeneity concerns the differences in the meaning of data values,
as well asin the interpretation of these values, which is largely influenced by the
context. Unlike schematic heterogeneity, which is primarily detected in structured
datasets, semantic diversities can also be found in unstructured and semi-structured
data. The rapid increase of unstructured data, such as those generated from social
media, reinforces the issue of semantic uncertainty and vagueness. Examples of such
uncertainties or diversities may pertain to synonymous terms, such as “urban fabric”
and “city fabric”; homonymous terms, such as the word “point” which might referto a
geographical entity denoting a specific location or to a measurement unit; and similar
terms expressed in different languages. Encoding the meaning associated with the
data, in such a way that it is machine readable and processable can be a rather intricate
process. Especially in the domain of urban analytics and planning, which involves

a wide range of geospatial and spatiotemporal data, as well as a broad spectrum

of disciplines using varied terminologies, semantic integration is essential in the
exchange and reuse of cross-sector datasets. The prevailing approach for addressing
semantic integration to date, is based on ontology engineering techniques. Ontologies
are conceptual models that formally describe a set of real-world entities and explicitly
define the relationships between them (Gruber, 1993; Guarino & Giaretta, 1995;
Mars, 1995; Studer, Benjamins, & Fensel, 1998; Zhu, 2014). Their aim is to provide a
shared vocabulary or knowledge model among the different stakeholders of a domain,
or address wider communities covering multiple domains. As such, ontologies are
usually the outcome of joint effort among domain experts. This Chapter is specifically
concerned with issues pertinent to semantic integration.
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TABLE 3 Types of data heterogeneity and corresponding approaches to interoperability.

Type of heterogeneity Description Approach to interoperability
Syntactic Difference in file format or OGC & W3C standards
encoding

(e.g. different value separators,
different identifiers)

Schematic Difference in database schema Schema mapping
(e.g. different naming conventions)

Semantic Difference in the meaning of data i Ontology engineering
values

(e.g. synonymy, polysemy, different
abbreviations etc.)

Ontology Engineering for Urban Data Integration

In the process of semantic integration, ontologies play a pivotal role, by accounting
for shared vocabularies and formal definitions of domain concepts and their
interrelationships. As it was mentioned in the previous section, these concepts
represent real-world entities (e.g. a point of interest, an urban block, a building

etc.), which are expressed in a machine-processable format, meaning that they

can be further interpreted by computing systems. Despite the different knowledge
representation languages used, ontology concepts are most frequently represented as
classes. These are subsequently organized into hierarchies or taxonomies, connecting
the different concepts together through explicitly defined relationships. Other essential
features of ontologies include attributes, which enrich concepts with data types (e.g.
integers, strings, Booleans etc.) and values, as well as axioms, which constitute logical
statements (e.g. a class is kind of another class, or a class is different from another
class etc.) enriching the knowledge about the domain in question. At the data level,
ontologies are further characterized by instances - also referred to as individuals

- which constitute specific objects belonging to more generic classes (e.g. a train
station is an instance of a generic class representing all types of buildings). Relations
and attributes may also contain several instances (Table 4). Being built on these
components, ontologies constitute prominent repositories for sharing, interpreting,
and reusing knowledge about a domain.
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TABLE 4 Ontology elements.

Ontology Elements Description

Class A description of a concept in a domain
(e.g. city, urban fabric etc.)

Individual (or Instance) A specific element that is member of a certain Class
(e.g. Amsterdam is an instance of the class "City”,
an urban block is an instance of the class “Urban

Fabric” etc.)
Property A relationship between two ontology elements
(i.e. object, datatype) (e.g. object properties relate individuals to other
individuals,

datatype properties relate individuals to data values)

Datatype Atype of data value
(e.g. literal, Boolean, string, integer etc.)

Annotation Additional information to a Class or Property
(e.g. version, label, comment, creator etc.)

Axiom Alogical assertion (or statement)

(e.g. a building [i.e. a Class representing all buildings]
is a sub-class of an urban block [i.e. a Class represent-
ing all urban blocks])

The main difference between ontologies and other conceptual models used in
computing systems - such as the Entity/Relationships Model (E/R Model), the Unified
Modeling Language (UML), or database schemas - is that the former describe an
existing knowledge domain, whereas the latter prescribe a system that is about to be
built (Grimm, Abecker, Volker, & Studer, 2011). Thereby, computational conceptual
models precede a certain information system, whereas ontologies come after the
establishment of a domain (Bishr & Kuhn, 2000; Métral et al., 2009).

In formally expressing ontologies, several languages have hitherto been developed,
with the Web Ontology Language (OWL) being the leading one. The latter has been
specifically designed to enable web-related applications of ontologies, as it will be
further discussed in the following sections. However, OWL does not constitute a single
knowledge representation language, but rather a family thereof, characterized by
varied degrees of semantic expressiveness. In particular, OWL Full has the maximum
amount of knowledge representation features; OWL DL (Description Logic) is also
highly expressive, yet entailing certain component restrictions; and OWL Lite is the
least expressive one, comprising only basic constructors (Antoniou & van Harmelen,
2009). The latest advancement of OWL, namely OWL 2, also contains three variants,
specifically OWL 2 EL (Existential Logic), OWL 2 QL (Query Language), and OWL 2 RL
(Rule Language) (Figure 3).
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FIGURE 3 Family of OWL and OWL 2 languages.

In addition to the various languages, ontologies may be used to represent knowledge
about a specific domain (e.g. urban planning, geographic information science etc.),
or very generic concepts that cover multiple domains. In the first case, ontologies

are called domain ontologies, whereas in the second case they are often referred to
as either top- or upper-level, or even foundational ontologies (Grimm et al., 2011).
Domain ontologies may incorporate concepts, or be established upon, upper-level
ontologies through alignment processes, which will be discussed later.

In developing a domain ontology to which local heterogeneous datasets can be
mapped, several actions need to be performed, together comprising what is referred
to as ontology engineering methodology (Gomez-Pérez et al., 2004). At first, the
requirements that the ontology has to fulfill are defined. These may include its general
purpose and goal, as well as the intended end-users and its specific usability, to

name but a few. Drawing on these requirements, relevant terms are extracted either
directly from the local datasets or generally from the knowledge domain, so as to be
later formally represented in the ontology corpus. The collected terms, which in fact
represent various ontological entities, are subsequently structured and organized into
hierarchies, comprising upper and sub-classes. At the same stage, which is generally
referred to as ontology conceptualization, the relationships among the various terms
(or classes) are also defined, in addition to relevant axioms and attributes. Besides the
initially extracted terms, relevant concepts or entities stemming from existing upper-
level ontologies, in addition to domain-specific concepts and terms from external
structured vocabularies can be incorporated into the hierarchy. This allows for more
efficient resource allocation and time management, since not all terms have to be
defined from scratch, while supporting interoperability among diverse knowledge
models. To this end, ontology search and selection processes need to be carried out, so
as to respectively identify and choose the most appropriate ontologies or concepts to
be incorporated. A frequent, yet significant, impediment to this process is the issue of

Transforming Heterogeneous Data for Cities into Multidimensional Linked Urban Data




multilingualism, thatis, when concepts are expressed and defined in different natural
languages, subsequently influencing the degree of integration. At the implementation
stage, following the selection and integration procedures, the definitive structure of
the knowledge model is determined. This is achieved by specifying concrete axioms
and relationships among the classes, deciding on the extent to which elements from
external ontologies will be reused and/or aligned, as well as by introducing potential
instances. Finally, the quality of the developed ontology has to be evaluated, not

only in terms of domain coverage, but also for possible modeling and reasoning
inconsistencies. This is achieved through the use of reasoners or other frames of
reference. An implementation of the procedures mentioned in this paragraph will be
presented in the applied example (Sect. 3.3.2.3).

In the context of urban planning, analysis, and modeling, the need for ontologies
increasingly gains momentum, as the landscape of available data sources is
progressively becoming complex and the range of involved disciplines is becoming
broader (Falquet, Métral, Teller, & Tweed, 2011). The simultaneous consideration of
spatial, social, and temporal aspects of urban systems, in addition to the diversity of
urban data, provide a reasonable motivation for the development of shared knowledge
models. However, the major obstacle in the development of such models lies in the
existing and growing amount of city-related terms with vague meaning (e.g. the terms
"place”, "event”, “"downtown", “function”, “land cover”, “smart grid”, “interactions”
etc.), making it difficult to reach consensus among the disciplines involved. In tackling
this issue, ontology design patterns can be particularly helpful, by providing a set of best
practices and reusable strategies that can be further applied to building urban-related
ontologies (Gangemi & Presutti, 2009).

The majority of related work to date has been conducted in the field of geographic
information systems (Janowicz, Scheider, Pehle, & Hart, 2012). Examples include
research on the formal definition of vague concepts, such as the term “place”, in

an attempt to provide a shared interpretation among the various stakeholders in
geography and planning (Abdelmoty, Smart, & Jones, 2007; Goodchild, 2011; Jones,
Alani, & Tudhope, 2001; Lutz & Klien, 2006). Such knowledge models could also be
valuable to the discovery of place-related content from human-generated data in social
media (McKenzie et al., 2015; Purves & Hollenstein, 2010). Drawing on the increasing
significance of the varied temporal dimensions of urban processes, ontologies have
also been developed to formally represent spatiotemporal properties of geographic
data (Bittner, Donnelly, & Smith, 2009; Christakos, Bogaert, & Serre, 2001). Despite
these efforts, the development of domain ontologies for urban analytics and planning
is still at a nascent stage (Zhu, 2014).
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Data Integration on the Semantic Web

The methods and techniques that have been discussed thus far primarily concern
approaches to data integration at the local level. However, the capacity of reusing
and sharing semantically enriched datasets can be further extended by publishing
and integrating these data on the Web. This can specifically be achieved through the
principles and technologies of the Semantic Web.

According to its definition, the Semantic Web does not resemble an independent
Web, but rather an extension of the existing one (Berners-Lee et al., 2001). What
differentiates it from the current Web, is that the latter was essentially designed for
linking documents that can be read and understood by people, whereas the Semantic
Web is about linking data represented in a machine-processable way, so as to be
easily used by both computers and people. Although the present state of the Web -
frequently referred to as the Social Web or Web 2.0 - is largely different from its initial
stage - usually referred to as Web 1.0 - in that it allows users to actively contribute
content without following a centralized and prescriptive schema, it nevertheless
continues to be about hyperlinks between documents. Conversely, the concept of the
Semantic Web, which aspires to evolve into Web 3.0, aims to strengthen the reuse and
integration of heterogeneous data that are not necessarily integral parts of certain
documents. In this way, data can serve purposes different than the ones for which they
were initially generated (Janowicz et al., 2012). Therefore, it offers a promising ground
for the integration of disparate urban data and their exchange among the various city
actors at a larger scale.

In achieving these goals, the Semantic Web architecture relies on ontologies and
ontology-related technologies (Domingue et al., 2011). In the previous section, OWL
and its various subcategories have been described as the predominant family of

languages for expressing ontologies to be further used in a web context. However, OWL

is built on top of a much simpler standard for describing and linking metadata, namely
the Resource Description Framework (RDF).

RDF constitutes in fact the cornerstone of Semantic Web technologies and is

further recommended by W3C. As its name indicates, it refers to a framework - in
particular a data model - for semantically describing resources on the Web (Gandon,
Krummenacher, Han, & Toma, 2011; Schreiber & Raimond, 2014). These resources
may represent any real-world entity (e.g. a place, a person, an urban block, a building,
a sensor, an administrative region, an organization etc.), each of which is uniquely
described by using Uniform Resource Identifiers (URIs). Relationships — which in

the RDF terminology are called properties — among the resources are also URIs. The
properties link resources to other resources that function as property values, also
described through URIs. Links between properties may also be established. Together,
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the resources, the properties, and the property values comprise the fundamental RDF
structure that is widely known as RDF triple. A triple further operates as a statement,
with resources being the subjects, properties the predicates, and property values

the objects. Combined, they represent a directed, labeled graph, where the subjects
and the objects are the nodes and the predicates the connecting lines (i.e. edges).
Therefore, RDF is a graph-based data model that enables the semantic description of
any real-world entity on the Web (Schreiber & Raimond, 2014) (Figure 4).

SUBJECT PREDICATE < OBJECT
(resource) (property) V4 (property value)

RDF statement (triple)

FIGURE 4 Graph-based structure of the RDF triple.

By mapping datasets to a domain ontology, a semantically rich RDF serialization

is produced, in which each entity is identified by a unique URL This further allows
data elements to be easily discovered by machines and to also establish links with
other data. In this way, new (linked) datasets are created that extend the application
capacities of the source data (e.g. correlating weather data with transport information
and fuel consumption records). In enabling such interoperability and exchangeability
capacities, RDF statements need to be expressed in a machine-processable format.
The prevalent RDF serialization standard to date is XML, yet statements can further be
expressed as N-Triples, TTL or Turtle (Terse RDF Triple Language), and increasingly as
JSON-LD (JavaScript Object Notation for Linked Data).

Finally, anintegral part of the Semantic Web technology stack is the possibility to
discover the datasets through specific queries, so as to be further exchanged or used

in other applications. To this end, the SPARQL (SPARQL Protocol And RDF Query
Language) language has been developed to query and retrieve RDF statements from
the Web. An extension of it, named GeoSPARQL, is particularly interesting for urban
analytics and comprises a specialized query standard established by OGC to allow the
query and exchange of geospatial RDF data (Battle & Kolas, 2012). Such queries can be
performed through dedicated services, known as SPARQL Endpoints.
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Generation and Publication of Linked Urban Data

Besides establishing internal links among the data that comprise an integrated dataset,
the publication of the latter on the Web would further enable the creation of links

with other integrated datasets from different domains. This could be beneficial to the
analysis of urban dynamics that require the combination of various social and spatial
attributes. The processes described in the previous sections facilitate the integration

of heterogeneous data and the creation of links within datasets. This could suffice for a
small-scale, local application, in which several datasets stemming from diverse sources
need to be integrated to serve, for instance, the purposes of a complex urban model.

To further ensure that these data resources are discoverable, accessible, and reusable
in other applications, additional links have to be established between datasets from
different domains on the Web. Interconnected data allow different stakeholders (e.g.
planners, decision-makers, public organizations etc.) to explore and exploit datasets
spanning several domains. To this end, data that are locally integrated through the use
of semantic (web) technologies (e.g. ontologies, RDF statements, semantic matching
etc.) further require the adoption of Linked Data principles to assure integration with
external data on the Web, as well as discovery and full access to all the resources

they describe (Heath & Bizer, 2011a). The resulting interconnected datasets are

then available to be linked to other external datasets pertinent to similar or different
domains (Heath & Bizer, 2011b).

In generating explicit links among structured data on the Web, Tim Berners-Lee
hasintroduced a set of principles that form the underpinnings of data interlinkage
(Berners-Lee, 2006). According to these principles:

URIs have to be used to name and, therefore, identify any real-world entity;

These URIs further need to be HTTP URIs to allow people discover these entities;
When a certain URI is discovered, additional useful information has to be provided by
using semantic standards (e.g. RDF, SPARQL);

Additional links with external URIs also have to be included to enable people discover
related entities.

The first two of the proposed guidelines draw, in fact, on fundamental web
technologies, which enable the creation of hyperlinks through the HyperText Transfer
Protocol (HTTP). Yet, the main difference lies in the URIs, which in this case are used
foridentifying any real-world entity or relationships between entities, rather than just
web-based documents (see also Sect. 3.2.3). This further stresses the fact that the
Semantic Web or Web of Data is actually an extension of the classic Web, built on top of
its fundamental technologies, instead of being an independent type of Web. Relevant
to this, is the proposed adherence to a certain standardized data model (i.e. RDF) and
query language (i.e. SPARQL) for representing and retrieving structured data, which
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are integral to the Semantic Web technology stack. Finally, the data resources - each
of which is identified by a URI - and their explicit RDF links should be used as a basis
to connect with other data resources, which also represent real-world entities and
are identified by URIs (e.g. a function connected to a building in an urban block, a POI
linked to an activity type carried out by a certain person etc.).

In addition to the above principles, Tim Berners-Lee provided a set of guidelines,

in the form of a rating system, to evaluate the quality of the generated Linked Data.
These guidelines - known as the 5-star Linked Data deployment scheme - are mainly
intended to foster the creation of high quality Linked Open Data (LOD), but can also
be used for assessing the quality of proprietary Linked Data (Berners-Lee, 2006).
According to the LOD deployment scheme:

[1-star dataset] Data available on the Web, in a machine-readable or non-machine-
readable format, under an open license (for the case of open data);

[2-star dataset] Data available in a machine-readable format (e.g. XLS instead of JPEG);
[3-star dataset] Data that adopt the above principles in addition to being available in a
non-proprietary format (e.g. CSV or JSON);

[4-star dataset] Data that comply with all the above and further make use of URIs and
RDF statements to identify resources and explicitly describe their interconnections;
[5-star dataset] Data that adopt all the above principles and create additional links with
external structured datasets.

The increasing amount of publicly available urban data generated by city-related
organizations can be further enhanced by adopting the LOD principles. It could
specifically increase the exploitation potential of open data, as it will be shown in the
applied example later in this Chapter, as well as in Chapter 4.

The publication of integrated data on the Web involves the adoption of the Linked
Data principles, as described above. To this end, data have first to comply with the
original source’s license attribution. The main issue hereof is privacy. Proprietary
data without an open license and non-anonymized records cannot be published as
LOD on the Web. This is particularly crucial when it comes to linking emerging urban
data sources, such as CDRs and social media data, in which user anonymity has to be
preserved and protected. Following this, both the locally generated RDF dataset and
the ontology to which the original data were mapped need to be made accessible,

by means of RDF repositories. Finally, to allow both people and computing systems
to discover and exploit the data, registration to existing and well-established data
catalogues is required (to enable discovery by people), in addition to the creation

of semantic sitemaps (to enable discovery by search engines) (Bauer & Kaltenbock,
2012). Open data complying with the Linked Data principles, can be registered to the
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LOD cloud?, which accommodates all the publicly available linked datasets that have
been published on the Web. This could enable better reuse and exploitation of the
linked dataset by different stakeholders. The most recent state of the LOD cloud (in
2014)includes a total of 1,014 linked datasets, classified into seven different domains,
comprising more than 85 billion RDF triples (Schmachtenberg et al., 2014). Relevant
to the focus area of this research, linked data pertinent to user-generated content
consist of 48 datasets (yet mostly from blogs, rather than social media platforms),
while those related to geographic data comprise 21 datasets, altogether composing
about 7 billion RDF triples.

Although the approaches and methods described in the previous sections set the
foundation for the integration and interlinkage of data from multiple sources, they
comprise generic standards and guidelines that are not necessarily applicable to every
domain (Radulovic et al., 2015; Villazén-Terrazas, Vilches-Blazquez, Corcho, & Gémez-
Pérez, 2011). Driven by the lack of a domain-oriented framework for data integration,
the following paragraphs present the design of a methodology for the transformation of
heterogeneous urban data into multidimensional linked urban data. The methodology
follows an ontology-based data integration approach and accommodates a variety

of semantic (web) and linked data technologies. Overall, it comprises three main
processes, namely: (a) urban data integration, (b) linked urban data generation, and (c)
publication to the LOD cloud. In a nutshell, the proposed methodology consists of the
following steps (see also Figure 5):
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— Semanticintegration:

— Selection of data sources and data preprocessing
— Data analysis and modeling
— Schema extraction
— Resource naming strategy definition
— Ontology design and development
— Terms extraction
— Reuse of existing ontologies and external structured vocabularies
— Terms hierarchy and ontology conceptualization
Ontology evaluation
— Mapping source data to the ontology (data transformation)
Transformation into multidimensional linked urban data:
— Establishing links with other sources
Publication to the LOD cloud:
— Ontology and RDF dataset publication on the Web
— Documentation accessibility (human-readable and machine-processable)
— Registration into a Linked Data catalog and publication to the LOD cloud

The methodology is demonstrated through a use case? employing real-world data
from multiple sources. In particular, nine large-scale spatiotemporal data sets are
collected from three public transportation organizations and cover the entire public
transport network of the city of Athens, Greece. As part of the data integration process,
an ontology for public transportation systems is also designed and implemented. The
resulting integrated dataset is further linked to external resources to provide richer
descriptions of the source data, and is eventually published to the LOD cloud.
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The methodology and use case presented in this chapter (in combination with the ontology and linked data vi-
sualization tools presented in Chapter 4) have been awarded the 1st Prize for Linked Open Data for Smart Cities.
The applied example was initially developed in the context of the 1st Summer School on Smart Cities and Linked
Open Data (LD4SC-15) [June 7 - 12, 2015, Cercedilla, Madrid, Spain], organized by the Ontology Engineering
Group (OEG) of the Universidad Politécnica de Madrid (UPM) and the Information Technologies Institute (ITI).
The project is included in the outcomes catalogue of the READY4SmartCities, part of the EU FP7 Coordination
and Support Action (Birov et al., 2015).
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FIGURE 5 Diagram of the proposed methodology for transforming heterogeneous data for cities into multidimensional linked
urban data.

§ 3.3.1 DataSources

At the first step of the methodology, a set of requirements is initially specified, as
regards the selection of the data sources. Bearing in mind that the goal of the final
integrated dataset, resulting from the combination of various source data, is to become
publicly accessible on the LOD cloud, the foremost essential requirement is that the
initial data are also under open license and can be accessed from a public domain.
Overall, the specified requirements for the demonstrated use case are as follows:
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Availability of the source data in a public domain, under an open license that allows
further publication and reuse;

Inclusion of both spatial and temporal parameters (e.g. geo-locations of origins,
destination, and intermediate stops; different means of transport; time intervals;
frequency etc.);

Representation in a machine-readable and, preferably, non-proprietary format (e.g.
csv);

Inclusion of entities that can be connected with generic entities from other domains to
perform more complex socio-spatial measurements;

Relatively large-scale dataset, in comparison with the average scale of the already
published datasets to the LOD cloud;

Reference to a real-world urban system.

On the basis of these requirements, the collected data of the presented example
comprise 9 data sets derived from three different sources and covering the entire public
transport network of the city of Athens, Greece. In particular, the source data originate
from OASA (Athens Urban Transport Organization), OSY (Road Transportation), and
STASY (Urban Railways), and are provided under an open license (Creative Commons
Attribution 3.0) through a publicly accessible governmental web-based repository,
based on an Open Government initiative. The different data sets contain records about
the origin and destination points of each transportation service, as well as the entire
network of intermediate stops for busses, trolleys, tram lines, metro, subway, and
commuter rail, accompanied by geo-coordinates. Additional metadata include the full
names of every stop, stop codes, route IDs, route types, directions, service frequency,
timetable changes, as well as arrival and departure times. In total, the 9 different data
sets comprise 2,100,000 tuples that are represented in the CSV (Comma Separated
Value) format, which is both machine-readable and non-proprietary.

The first source of data, namely OASA®, provides generic records about the service
frequency, the timetables, the arrival and departure times, in addition to the route
IDs and full names of origins and destinations, concerning all aforementioned means
of public transport. The datasets provided by the second source, OSY#, contain tuples
about the bus and trolley network at a more disaggregate level than the ones collected
by OASA. More specifically, they include the names (code and head sign) of each bus
and trolley, as well as all intermediate stops between each origin and destination

with precise geo-coordinates (i.e. pairs of latitude and longitude, using the WGS84
geodetic system). Besides latitude and longitude pairs, each stop is further described
by a unique ID and code number, as well as by the full name of the street on which it
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is located. Finally, the third source, STASY®, provides data about the entire network
of metro, tram lines, suburban railway, and commuter rail. As is the case with the
previous data source, each stop is accompanied by precise geo-coordinates, code
numbers, full names, and nearby streets or major squares (Table 5).

TABLE 5 Data sources and data sets.

Source Observations (attribute Mode of Number of tuples
categories) transport
OASA - Service frequency Bus 51,872
(Athens Urban Transport | - Timetable Trolley
Organization) - Arrival and departure Tram
times Metro
- Route ID Subway
- Origin & destination Commuter rail
points
oSy - Code and head signof ~: Bus 1,983,955
(Road Transportation) buses and trolleys Trolley

- Intermediate stops
(geo-referenced)

- StopID

- Stop code number
- Street network

STASY - Intermediate stops Tram 64,173
(Urban Railways) (geo-referenced) Metro

- Stop code number Subway

- Stop full name Commuter rail

- Streets and squares
nearby each stop

As mentioned above, the datasets are publicly available and were retrieved from

a web-based governmental repository®. The license accompanying the data is a
Creative Commons Attribution 3.0 license’, which allows data to be freely shared,
transformed, adapted, reused, and republished. Thereby, the datasets meet the Open
Data requirements, which further enable their publication to the LOD cloud (see Sect.
3.3.5) and their exploitation by third parties. In combination with the fact that all 9
data sets are provided online in a non-proprietary and machine-readable format, they
can be rated as 3-star data, based on deployment scheme by Tim-Berners Lee (see
Sect. 3.2.4). The goal is thus to combine them into an integrated 5-star dataset, using
semantic technologies.
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The license is available at: http://labs.geodata.gov.gr/en/dataset/urban-transportation-routesathens
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Data Analysis and Modeling

Schema Extraction

In the previous section, it was mentioned that the collected data are distributed across
9 different subsets, each of which addresses specific parameters of the Athenian public
transport network. More specifically, these subsets are: the Calendar (containing data
about timetables); the Routes (comprising data about route IDs, in addition to arrival
and departure times); the Trips (referring to origins and destinations); the Stops_OSY
(with data about bus and trolley intermediate stops and their geo-coordinates); the
Stops_STASY (as previously, yet only for metro, tram, suburban railway, and commuter
rail); the Stop_times_OSY; the Stop_times_STASY; the Agency (containing metadata
about each source); and the Feed_info (comprising data about service frequency). The
structured format in which the data are provided (i.e. CSV) allows the extraction of the
local schemas, by analyzing their particular features, types, and values.

Although the data originate from three different sources, common elements are
identified across them, subsequently leading to the establishment of local links
between the elements that are semantically equivalent. In particular, the element
route_id, referring to an identifier encoding a certain route, is detected in both the
Routes and the Trips subset. Similarly, the element trip_id, which encodes a particular
trip type, is identified in the Trips, the Stop_times_OSY, and the Stop_times_STASY
subsets. The service_id element, containing descriptions about the service frequency
and iterations, is found in the Calendar and the Trips subset. The values of the three
aforementioned elements are represented as strings. Finally, the element stop_id,
indicating a unique code number for each intermediate stop, respectively exists in the
Stops_OSY, Stops_STASY, Stop_times_OSY, and Stop_times_STASY subsets. Its values are
represented as integers.

Otherimportant elements include the stop_lat and stop_lon, respectively indicating the

latitude and longitude coordinates of each stop, based on the WGS84 geodetic system
and expressed as floats. These elements appear in the Stops_OSY and Stops_STASY
subsets, but refer to different means of transport, depending on the data source. Also
in the Calendar subset, there exist individual elements indicating each day of the week
(i.e. monday up to sunday), the values of which are represented as Booleans. The latter
signify whether or not a service is functional on a particular day. The complete schema
of the dataset, containing the entire range of attributes and their values (i.e. data
types), isillustrated in Figure 6.
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Calendar

Routes

Trips

Agency

+service_id: string
+monday: boolean
+tuesday: boolean
+wednesday: boolean
+thursday: boolean

+saturday: boolean
+sunday: boolean
+start_date: date
+end_date: date
+exception_type: integer

+route_id: string
+route_short_name: string
+route_long_name: string
+route_desc: string
+route_type: positive integer
+route_color: hex binary
+route_text_color: hex binary
+arrival_time: time
+depart_time: time

+route_id: string
+service_id: string
+trip_id: string
+trip_headsign: string
+direction_id: integer
+block_id: integer
+shape_id: integer
+start_point: string
+end_point: string

+agency_name: string
+agency _url: varchar
+agency_timezone: varchar
+agency_lang: string
+agency_phone: varchar

Feed_info

I
|
I
|
|
1
|
I
|
I
|
.| +friday: boolean
|
I
|
|
I
|
I
|
|
I
|

+feed_publisher_name: string
+feed_publisher_url: varchar
+feed_lang: string
+feed_version: datetime

Stops_OSY

Stop_times_OSY

Stops_STASY

Stop_times_STASY

+stop_id: integer
+stop_code: integer
+stop_name: string
+stop_desc: string
+stop_lat: float

+stop_lon: float
+location_type: integer
+bus_line: character
+trolley_line: character
+wheelchair_access: boolean

+trip_id: string
+stop_id: integer
+stop_sequence: integer
+pickup_type: boolean
+drop_off_type: boolean
+bus_line: character
+trolley_line: character

+stop_id: integer
+stop_code: integer
+stop_name: string
+stop_desc: string
+stop_lat: float
+stop_lon: float
+location_type: integer
+metro_line: character
+tram _line: character
+sub_line: character
+com_line: character
+street_near: string
+square_near: string
+wheelchair_access: boolean

+trip_id: string
+stop_id: integer
+stop_sequence: integer
+pickup_type: boolean
+drop_off_type: boolean
+metro_line: character
+tram_line: character
+sub_line: character
+com_line: character

FIGURE 6 Data schema of the OASA, OSY, and STASY data sets.

Resource Naming Strategy

Given that the goal is not only to generate an integrated dataset from the various
sources, but also to publish it as Linked Open Data to strengthen its exploitation
potential, HTTP URIs are used for identifying each resource in the dataset and their
relationships. This decision specifically draws on the first and second principles of
Linked Data (see Sect. 3.2.4). As has been discussed previously, resources in the

context of the Semantic Web may represent any real-world entity, whether this refers

to the entity itself or to a web-based document that describes what this entity is

about. To this end, there generally exist two strategies to enable people discover these

resources, namely 303 or slash URIs and hash URIs (Sauermann & Cyganiak, 2008).

Both strategies allow the disambiguation between a real-world entity and a document
that describes it. Moreover, they both give the opportunity to people or machines (both

may operate as clients, sending requests to a server) to retrieve a representation of a

resource in the format that best satisfies the criteria of readability - respectively, HTML

and RDF (Heath & Bizer, 2011a).
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Prior to defining which of the two resource naming strategies is more suitable

for a dataset, the first step is to determine a persistent domain address. This will
subsequently ensure that the resulting URIs will also be persistent. Changing URIs
can have a negative effect on third-party applications that rely on them for retrieving
relevant resources. The chosen URI form determines the path structure that follows
the domain address. Generally, the main difference between slash and hash URIs lies
in the way in which a client (human or machine) requests a certain representation
of a resource from a server, as well as in the way a server responds to that request.

In HTTP terminology, this process is known as content negotiation (Fielding et al.,
1999). In the case of slash URIs, two HTTP requests are needed so that the client
obtains a description of a real-world entity in the desired format (usually HTML for
human clients and RDF for machine ones). Conversely, hash URIs are characterized
by a distinctive part - called fragment —that is disconnected from the rest of the URI
by a hash symbol. This part is excluded from a client’s request and, thereby, a server
returns all the available resources that share the same non-hash part (Sauermann &
Cyganiak, 2008). As a consequence, in cases of large-scale sets of resources, the hash
URI strategy will return to the client an extensive amount of unnecessary resource
descriptions. Nevertheless, this strategy is more straightforward than slash URIs, as
single descriptions can be obtained with only one request instead of two.

In the example presented here, a custom URI domain on GitHub is first created, in
particular https://route-owl.github.io/. Given that the initial data from the different
sources contain about 2,100,000 tuples, which are also frequently updated, and the
resulting RDF statements will be much larger in volume, the chosen resource naming
strategy is that of slash (303) URIs. Thus, the URI path form has the following general
pattern:

https://route-owl.github.io/resource/<resource_type>/<resource_name>

Forinstance, the URI that returns the RDF statements of the various routes has the
form:

https://route-owl.github.io/resource/route/route.rdf

The ontology model (described in the following section), to which the source data are
mapped, uses a separate subfolder in the base URI domain. This is to disambiguate
between the ontology model per se and its instances. Since the ontology comprises a
much smaller and rather stable set of resources, the hash URI strategy is chosen in this
case. Therefore, the corresponding URI path for the ontology model has the following

generic pattern:

https://route-owl.github.io/ontology#
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Accordingly, the generic URI paths for class names and properties (relationships)
respectively follow the form:

https://route-owl.github.io/ontology#<ClassName>
and

https://route-owl.github.io/ontology#<propertyName >

Ontology Design and Development

In order for the diverse source data to be integrated into a coherent dataset, a domain-
specific ontology is developed that operates as a semantic model to which the initial
data and their schemas are mapped. The ontology further assists in resolving the
semantic discordance between concepts inherent to the various data sources, in
addition to preventing term redundancy. In this example, it also aims to be used by
planners, decision-makers, and other city stakeholders for performing queries and
extracting information from the integrated data.

To this end, the developed ontology, named ROUTE, which stands for Route Ontology
of Urban Transportation Entities, formally describes concepts of multi-modal public
transportation systems and the relationships between them. It particularly comprises
classes about transport services, pick-up and drop-off types, geospatial concepts about
stops and routes, as well as temporal concepts describing time intervals, frequency,
duration, among other related entities. It further enables formal representation of
human agents, agencies (e.g. transportation companies), transfer types, and additional
features, such as fare and payment methods, accessibility, and zoning. Classes are
accompanied by several object and data properties, which define the relationships
between classes, allow full statements (axioms) to be built, and specify values

and units of measurement. By mapping data to the ROUTE ontology, third-party
stakeholders can extract and infer combined information from various sources and,
further, incorporate them into more disaggregate models of urban flows, interactions,
or simulations of public transport systems. The following paragraphs describe the steps
of the ontology design and development process.

Terms extraction

The extracted schema from the source data (Figure 6), presented in Sect. 3.3.2.1,
serves as the basis for the terms that mainly correspond to classes in the ROUTE
ontology. Further, the structure of the various schema elements and their attributes
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assists in building the, later described, term hierarchy. Examples include terms related
to route concepts, such as start point, end point, stop, station, route type, among
others which are directly extracted from the data schema. Others pertain to modality
concepts, such as transportation type, pickup and drop-off type, transfer type, and
wheelchair accessibility. Geographic entities are represented by terms such as place,
administrative area, city region, point, and zone. Moreover, time-related concepts
include terms such as temporal unit, date-time interval, time zone, stop time, trip
duration, among others.

Wherever possible, synonyms of the aforementioned terms were also included in the
ontology vocabulary. This allows a wider range of semantics to be covered that would
enable further links with relevant external datasets to be established. In achieving
this, the ROUTE example draws on equivalence relations; an inherent functionality to
OWL-DL. Forinstance, temporal entity is defined as equivalent to instant or interval;
temporal unit is equivalent to day, hour, minute, second etc. To further increase the
ontology's degree of versatility and, thereby, its potential to create external links, the
majority of the terms were described in four languages, namely English, French, Greek,
and Irish Gaelic. The extracted terms are then classified into concepts that operate

as classes, object properties (i.e. relationships between classes), data properties (i.e.
relationships between classes and datatype values), or instances (i.e. individuals by
class). Forinstance, the terms bus, metro, subway, and tram operate as instances to the
class route type, which is one of the main schema elements.

Reuse of existing ontologies and external structured vocabularies

The reuse of already existing ontologies, standards, and structured vocabularies in
semantically integrating heterogeneous data enables the latter to relate and interact
with datasets and applications relying on established knowledge models. It further
assists in preventing semantic redundancy between similar or closely related concepts
included in different ontologies. Drawing on this approach, the ROUTE ontology reuses
concepts, relationships, and axioms from three existing ontologies and 15 external
structured vocabularies.

Concerning existing ontologies, ROUTE firstly imports concepts and relationships

from the GTFS (General Transit Feed Specification) ontology®. GTFS is in fact a direct
translation of the general transit feed specification into an ontology, so that it can

be used in a Semantic Web framework. It comprises a well-established standard for
describing concepts pertinent to routes and route types, transfer types, trips, stops, and

Namespace: http://vocab.gtfs.org/terms#;
Homepage: https://raw.githubusercontent.com/OpenTransport/vocabulary/ master/gtfs/gtfs.ttl
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service availability, for several modes of transport. Its use in structuring transport data
in numerous applications worldwide, in addition to its relevance to several schema
elements of ROUTE, make it an excellent model upon which the ROUTE ontology can
be built. The GTFS model is directly imported into ROUTE, yet many of its elements are
extended by means of additional axioms.

To further capture both geospatial and temporal concepts, elements from the

WGS84 Geo Positioning (WGS84_pos) vocabulary® and Time (owl-time) ontology*°

are respectively reused. The former comprises concepts about general geographic
entities such as wgs84_pos:Location and wgs84_pos:Point, among other entities for
formally representing latitude, longitude, and altitude information, using the WGS84
geodetic reference system. Conversely, the Time ontology incorporates several concepts
pertinent to time intervals, date-time description, frequency, and duration description,
and their relationships. In the case of these two vocabularies, element integration

into ROUTE is carried out by means of referencing resource URIs, instead of directly
importing them.

In relation to the several external structured vocabularies, ROUTE reuses elements from
15 different ones, describing various concepts. The majority of these vocabularies are
widely-recognized and used in several applications thus far. Thus, by adopting part

of their terms and by integrating them into the ROUTE ontology ensures commonly
accepted descriptions of concepts across various domains and, hence, increased
interoperability potential in future applications. Closely related to ROUTE's scope, the
otn (Ontology of Transportation Networks) provides more specialized concepts about
road networks, land cover and land use, as well as traffic. To capture formal knowledge
about agents, organizations, and their relationships, it references elements from

the foaf (Friend of a Friend) vocabulary. Other terms derive from vocabularies such

as dbpedia-owl, dc (Dublin Core), dct (Dublin Core Terms), schema, terms, and vann
(Vocabulary for Annotating vocabulary descriptions). Within the LOD framework, it
reuses concepts from the ns vocabulary, for describing Creative Commons rights in RDF
format. Finally, it complies with the formalities of owl, owl2xml, rdf, rdfs, xml, and xsd.
The set of external ontologies and structured vocabularies is extracted from the Linked
Open Vocabularies (LOV) repository*!, so as to ensure that all models are provided under
an open license, which additionally allows further processing and reuse (Table 6).

10
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Namespace: http://www.w3.0rg/2003/01/geo/wgs84 _pos#;
Homepage: http://www.w3.0rg/2003/01/geo/

Namespace: http://www.w3.0rg/ 2006 /time#;
Homepage: http://www.w3.org/TR/owl-time

http://lov.okfn.org/dataset/lov/
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TABLE 6 Direct (i.e. complete) or partial reuse of ontologies and structured vocabularies.

‘ Ontology | Vocabulary

Prefix

URI (Namespace)

ONTOLOGIES
WGS84 Geo Positioning | wgs84_pos http://www. direct
w3.0rg/2003/01/geo/
wgs84 _posi#
Ontology of Transport otn http://www.pms.ifi.lmu. | partial
Networks de/rewerse-wgal/otn/
OTN.ow!
STRUCTURED :
VOCABULARIES :
Dublin Core dc http://purl.org/dc/ele- : partial
ments/1.1/
Friend Of A Friend foaf http://xmlins.com/ partial
foaf/0.1
Web Ontology Language | owl http://www. direct
vocabulary w3.0rg/2002/07/owl#
Resource Description ttp:/ /www. direct
- Framework w3.0rg/1999/02/22-
: df-syntax-ns#
Schema vocabulary ttp://schema.org/# partial
VANN vocabulary vann http://purl.org/vocab/  partial
vann/
Extensible Markup xsd http://www. direct
Language schema w3.0rg/2001/XM-
LSchema#
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Terms hierarchy and ontology conceptualization

Besides acquiring appropriate terms for semantically describing schema elements
and related concepts, a hierarchy is created, defining super-classes and sub-classes
and the properties that connect them together. The various external ontologies and
structured vocabularies, mentioned in the previous section, do not supply the entire set
of concepts needed to describe the source data. Therefore, a set of new classes, object
and data properties, and instances are introduced to serve the purpose of ROUTE.
These new ontology elements draw, firstly, on the particularities of the source data at
hand and, secondly, on its potential future application in urban models for the study
of (human) flows and multi-modal mobility. As a result, the approach followed in
conceptualizing the ROUTE ontology is both data-driven and competence-driven.

Based on these principles, the entire ROUTE conceptualization comprises 271 entities,
classified into 51 classes, 166 object, data, and annotation properties, as well as 54
individuals (instances) and datatypes, implemented with 1,140 axioms. The chosen
coding formalism is that of OWL2- for its high expressiveness and for being recognized
by W3C as one of the standard languages to represent ontologies in the Semantic Web
context (Table 7). In developing the ontology, the Protégé platform is used (Knublauch,
Fergerson, Noy, & Musen, 2004, Stanford University).
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TABLE 7 ROUTE Ontology metrics, types of correspondence, and annotations.

Metrics, types of corresp Counts / Annot. Examples
dence & annotations

ONTOLOGY METRICS Total number of ontology

i entities

Object properties 67 hasStartPoint, isLocatedIn etc.

Annotation properties 45 language, prefix, creator etc.

Datatypes 14 string, integer, Boolean etc.

Classes, properties etc.

AXIOMS
Subsumption correspondenc- | 93 Municipality is a subClassOf
es (subClassOf axioms) administrative area
Assertion correspondences 712 Syntagma square isA start
(isA axioms) point
Disjointness correspondences | 1 Instant is disjointWith proper
(disjointWith axioms) interval
Range axioms 920 The range of hasTransferType
property is the class Trans-
ferType
ANNOTATIONS
URI https://route-owl.github.io/ontology#
Coding formalism owLz-

In structuring the hierarchy of the ontology components, the first type of
correspondence is that of class subsumption, formally defined by rdfs:subClassOf
relationships. This organizes the extracted terms into super-classes and sub-classes.
Super-classes correspond to key domain terms that are included in the data schema
and also represent related concepts, which together will form the main links with
external datasets. Given that public urban transport is the core domain of ROUTE, the
main parameters captured by the ontology relate to the following:
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Modes of transport: the class gtfs:RouteType describes the type of transportation
system used on a route. Thereby, it is accompanied by several instances, such as
Subway, Metro, Bus, Tram etc,;

Route features: the general gtfs:Route concept, which marks a route followed

entirely or partly by gtfs:Trip, is further enriched with the newly introduced concepts
route:StartPoint, route:EndPoint, and route:Stop to respectively represent the origin,
destination, and intermediate stops across a certain transport route;

Trip features: additional attributes are described by classes such as gtfs:PickupType,
gtfs:DropOffType, gtfs:PaymentMethod, schema:PriceSpecification, and
gtfs:WheelchairBoardingStatus, among others;

Service attributes: relevant classes include gtfs:Service, gtfs:Transfer, gtfs:TransferType,
gtfs:TransferRule etc.;

Agents: since the scope of the ontology is to also be used in the study of human activity
patterns, ROUTE incorporates classes such as foaf:Agent, subsumed by gtfs:Agency,

to respectively describe people and organizations in general and, more specifically,
transportation providers.

Geographic and spatial attributes are represented by classes such as schema:Place -
which subsumes schema:AdministrativeArea and dbpedia:City — wgs84_pos:Point,
subsumed by wgs84_pos:SpatialThing. ROUTE also reuses gtfs:Shape, which describes
a route’s polygon, and gtfs:Zone, which represents the different urban zones crossed by
aroute. To formally represent various types of land uses, the route:PointOfInterest class
isintroduced, accompanied by several instances such as Restaurant, Museum, College,
Hospital etc. For its importance in the transportation domain, the gtfs:Station consists
anindividual class, separate from the rest of POlIs.

Temporal attributes are described through time:DayOfWeek, time:DurationDescription,
time:TemporalUnit, time:TimeZone, with various sub-classes and instances. In
addition, gtfs:Frequency is used for describing how often a certain mode of transport
operates, while the time:DurationDescription identifies the travel time between a
route:StartPoint and a route:EndPoint. In further disaggregating the generic Duration
concept, the route:StopTimes is introduced to represent arrival times at intermediate
stops. The semantic network of the ROUTE ontology hierarchy is (partially) shown in
Figure 7.
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FIGURE 7 ROUTE Ontology. Semantic network representation of class hierarchy and indicative relationships (i.e. object properties).
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Besides subsumption, ROUTE also incorporates mereology correspondences between
classes, represented by the generic partOf and hasPart relationships. The latter is an
inverse of the former, drawing on inverse relations supported by OWL. Upon these
generic relationships, a set of object properties is built to specify how different super-
and sub-classes are connected to each other. Subsumption relationships, described
in the previous paragraphs, are necessary for logical reasoning, whereas mereology
captures the knowledge of the ontology’s domain. To further specify constraints in
the way classes are related to each other, existential restrictions are established. The
latter are denoted by the keyword some and indicate that the individuals belonging

to one class have at least one type of relationship (object property) to the individuals
of another class. Forinstance, the class gtfs:Trip represents the accumulation of
gtfs:StopTimes of a certain type of vehicle following a particular route. The individuals
belonging to gtfs:Trip are in fact various time intervals, characterizing e.g. a bus

line. Besides arrival times at intermediate stops, a gtfs:Trip is also characterized by a
route:StartPoint (origin) and a route:EndPoint (destination). Therefore, the individuals
belonging to gtfs:Trip have some route:hasStartPoint and some route:hasEndPoint
relationship with the individuals of route:StartPoint and route:EndPoint respectively.
Similarly, each individual of these classes has some route:isLocatedIn relationship to
the individuals of schema:AdministrativeArea, which is in turn partOf a schema:Place.
Additional features characterizing the individuals of gtfs:Trip may refer to particular
pickup and drop-off types. Hence, gtfs:Trip individuals have some gtfs:hasPickupType
and some gtfs:hasDropOffType individuals respectively. Moreover, a route:stopsAt
property is introduced to correlate the individuals of gtfs:Trip to those of gtfs:StopTime.

Given that the ROUTE dataset incorporates both spatial and temporal elements,
spatial and temporal correspondences between classes are also established. To this
end, new object properties are introduced and integrated with reused ones from
external ontologies. Examples of spatial correspondences include properties such

as route:isLocatedIn, route:inDirection, route:haslLocation, route:hasStartPoint, and
route:hasEndPoint, among others. These relationships are used to construct axioms
(statements) such as: A tram line (i.e. individual of gtfs:RouteType) is route:inDirection
to a particular destination (i.e. individual of route:EndPoint), which in turn
route:belongsTo a region in the city (i.e. individual of schema:AdministrativeArea).
Examples of temporal object properties are time:hasDurationDescription,
time:inDateTime, route:startsOn, route:startsFrom etc. With these properties, axioms
such as the following can be described: A bus (member of gtfs:RouteType) of the

line L1 (formally: route:hasID some string - that is a value of the class route:ID)
route:startFrom some ti and reaches its final destination (route:EndPoint) at some tj.

In addition to existential restrictions described previously, ROUTE makes use

of several cardinality restrictions to specify the minimum, maximum, and exact
number of relationships that a class individual is allowed to engage in. For instance,
a day - which is an individual of time:DateTimeDescription - can have a maximum
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(owl:maxCardinality) of 1 literal (e.g. Monday). The aforementioned axiom actually
uses a combination of a cardinality restriction (i.e. maximum) and a qualified
cardinality restriction, by stating the amount of objects within the restriction
(Bechhoferetal., 2004). Equivalence correspondences use the built-in OWL property
owl:equivalentClass to signify which classes contain the same individuals, whereas the
indication of individuals having different URIs, yet referring to the same real-world
entity, is carried out by an owl:sameAs property. Finally, with the exception of reused
elements, the URIs of the entire set of classes and properties introduced into ROUTE
comply with the ontology’s resource naming strategy, described in Sect. 3.3.2.2. The
implemented ROUTE ontology is available online at the following link: https://github.
com/ROUTE-OWL/ROUTE- OWL.github.io/blob/master/ontology.owl. The code
expressed in RDF/XML syntax is also presented in Appendix A.

Ontology evaluation

Following the conceptualization and implementation of the ROUTE ontology, an
evaluation process is carried out, so as to examine its technical quality and performance
against various dimensions. Gdmez-Pérez (Gémez-Pérez, 2004) identifies several criteria
for evaluating ontologies, the most significant of which are completeness, consistency,
conciseness, expandability, and sensitiveness. Potential logical inconsistencies, which
relate to the existence of contradictory statements in the ontology conceptualization, are
tested by means of reasoners. To this end, three consistency tests are performed, using

a different reasoner each time, respectively FaCT++12, HermiT**, and Pellet**. No logical
inconsistencies were detected in all three tests.

In further evaluating additional dimensions of the ontology, such as completeness (i.e.
the entire set of ontology components is explicitly defined or can be inferred through
reasoning) and conciseness (i.e. absence of redundancies and unused components),
the OOPS! pitfall scanner®® is used. OOPS! (OntOlogy Pitfall Scanner) is a web-based
tool for detecting frequently appearing pitfalls (e.g. unconnected ontology elements,
missing annotations, wrong equivalent properties etc.) in implemented ontologies
(Poveda-Villalon, Gémez-Pérez, & Suarez-Figueroa, 2014). Several evaluations were
performed during the ontology development process, so as to timely identify potential
pitfalls prior to establishing the complete ontology conceptualization.

12

13

14
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http://owl.man.ac.uk/factplusplus/ (Accessed on: February 19, 2016).
http://hermit-reasoner.com (Accessed on: February 19, 2016).
http://clarkparsia.com/pellet (Accessed on: February 19, 2016).

http://oops.linkeddata.es (Accessed on: February 19, 2016).
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In the implemented ROUTE ontology only minor pitfalls were discovered by the web-
based platform, all of which pertain to missing annotations in reused classes and object
properties. However, this has no significant effect on the conciseness of the ontology.
Besides, the set of newly introduced elements was entirely concise and complete. To
further allow evaluation by domain experts, a web-based ontology browser and viewer
have been specifically developed and will be presented in Chapter 4.

Data Transformation and Integration: Mapping Source Data to the Ontology

To complete the semantic integration process of the proposed methodology, one of
the most crucial tasks is to map each element of the heterogeneous source data to

the developed ontology. The mapping ensures that the various original data, which
may initially be represented in diverse formats, are eventually transformed into an
integrated dataset that is expressed in a unified data format (i.e. RDF). The resulting
RDF triples - as described in Sect. 3.2.3 - represent complete statements that connect
the various data elements in a subject-predicate-object structure. Usually, subjects
consist of the individuals belonging to a class (e.g. in the initial data, these could be
the elements under a header, which is mapped to a class in the ontology), predicates
contain the object properties, and objects may also comprise individuals of classes (e.g.
attributes of the source data) or values.

Prior to mapping the nine source data sets to the ontology and, subsequently,
transforming them into an integrated dataset, the type of RDF serialization is first
defined. In Sect. 3.2.3, it has been described that RDF triples can be described in
several machine-processable serializations, such as RDF /XML, N-triples, TTL (Turtle),
and JSON-LD. In the ROUTE example, the chosen serialization is that of RDF/XML,
which is also the most frequent expression of RDF triples. Although, this particular
type of serialization is less human-readable, compared to the other formats, it is
nevertheless easily processed by computing systems and can, thereby, serve semi-
automatic or automatic Linked Data applications in urban analytics.

Following the selection of the RDF serialization, the mapping of the initial data to the
ROUTE ontology is carried out by using the OpenRefine'¢ platform and, specifically,
its LODRefine” distribution, which contains extensions particularly built for Linked
Data transformation purposes. OpenRefine is an open-source tool for cleaning,
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http://www.openrefine.org/index.html (Accessed on February 21, 2016).

https://github.com/sparkica/LODRefine (Accessed on February 21, 2016).
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normalizing, and transforming data from one format into another, while it is
particularly effective with tabular data. Given that the initial data are in CSV format
and having as a requirement the use of open-source tools and licenses throughout the
integration and interlinking procedure, OpenRefine appropriately conforms to these
prerequisites. Prior to merging the data together, the initial source subsets are cleaned
from empty columns and missing elements that hinder the generation of complete
RDF statements. After the initial data are cleaned and their values are normalized,
each element is transformed into an RDF instance, by mapping it to the corresponding
ontology component (hence, it becomes an individual of a certain class) and by,
further, specifying its URI, based on the chosen resource naming strategy (see Sect.
3.3.2.2). Forexample, the class that formally describes a certain public transport route
in the ROUTE ontology (i.e. gtfs:Route) has the following hash-based URI:

https://route-owl.github.io/ontology#Route

Aninstance of this class, e.g. the bus line with ID "040-20", which travels from
Piraeus (member of the route:StartPoint class) to Syntagma square (member of the
route:EndPoint class), is mapped to gtfs:Route and eventually obtains the following
slash-based URI:

https://route-owl.github.io/resource/route/040-20

Following the mapping of an element to a class (i.e. subject), the object properties (i.e.
relationships/predicates) of this element and the subsequent values (i.e. objects) of
the properties are further specified. In the aforementioned example, the complete RDF
description of the bus line “040-20" and its attributes is given as follows:

<rdf:Description rdf:about="https://route-owl.github.io/resource/route/040-20" >
<rdf:type rdf:resource="http://vocab.gtfs.org/terms#route"/ >
<route:shortName>40</route:shortName>
<route:longName>PIRAEUS - SYNTAGMA SQUARE</route:longName>
<gtfs:color>153CEQ</gtfs:color>
<gtfs:textColor>FFFFFF</gtfs:textColor>
<route:hasType rdf:resource="https://routeowl.github.io/resource/route _
type/3"/>
<route:ID>040-20</route:ID>

</rdf:Description>

By iteratively applying the above-described mapping and transformation process to all

data elements, the nine initial data sets are merged together, eventually generating the
(single) integrated ROUTE dataset, which comprises 4,593,531 RDF triples in total.
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The resulting RDF dataset has been validated for both syntax and representational
consistency with the ROUTE ontology. Syntax validation has been carried out by means
of the W3C RDF Validator'é; a publicly available web-based syntax validation service for
RDF datasets. The validation for representational consistency of the RDF dataset has
been performed by means of reasoners, in particular Pellet and FaCT++. Both validation
procedures showed that the obtained RDF data are fully consistent with the ROUTE
ontology and are further expressed in a syntactically correct way.

The mapping and transformation procedure from the source data to the ontology
components that is described in this section can be automatically performed for

future updates, provided that the source data maintain their initial schemas. This is
particularly important for spatiotemporal urban data that are characterized by frequent
refresh rates. Therefore, urban models or simulations that require the use of integrated
datasets from heterogeneous and dynamic sources can be automatically updated, once
the first mapping has been established.

At this point, the obtained RDF dataset constitutes a 4-star dataset, as opposed to the
initial 3-star data (see Sect. 3.2.4). The processes that have been described thus far
comprise the first part (i.e. semantic integration) of the proposed methodology. The
following sections elaborate on the second (i.e. linked data generation) and third part
(i.e. publication to the LOD cloud) of the methodology.

Establishing Links with Other Sources

Besides locally integrating heterogeneous data into a dataset, establishing links with
resources of other integrated datasets enables the combination of information from
various domains. In turn, this combination increases the potential for use in domains,
other than those covered by the initial datasets. In the linking process, entities (e.g.
terms, instances, properties etc.) of one dataset are connected with similar ones of the
other dataset(s). To define and assess the similarity between two entities, there exist
several methods and measures that are based on the label or comments of entities,
the string structure, or the content, all of which are founded upon textual similarity
aspects. Conversely, entities can be compared on the basis of their internal structure,
i.e. their properties, the domain and range of these properties, the data types, and the
cardinality restrictions (Euzenat & Shvaiko, 2013).
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https://www.w3.org/RDF/Validator/ (Accessed on February 21, 2016).
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In the specific context of Linked Data, links between datasets can be established by
creating correspondences between instances. In the case where two or more datasets
have been mapped to the same ontology, individuals belonging to the same classes
can be connected with each other. In the case where the datasets have been mapped
to different ontologies, an ontology matching process needs to be carried out first and,
thereafter, the instances belonging to the aligned (equivalent) classes can be linked
together (Nikolov, Ferrara, & Scharffe, 2011; Scharffe & Euzenat, 2011).

The process of linked data generation is further demonstrated in the presented use
case.

The integrated dataset obtained in the previous phase establishes links with external
geo-datasets that are already available on the LOD cloud. In particular, links are
established with resources from DBPedia’® and GeoNames?°. DBPedia comprises a
knowledge base which stores structured information extracted from Wikipedia pages
in RDF format. Conversely, GeoNames contains geospatial semantic information about
place names and their relations, also expressed in RDF format. At the current state of
the DBPedia dataset, more than 526,000 places are represented as URIs. By generating
links with resources of these particular datasets, the aim is to take advantage of the
large amounts of external interconnections that these two datasets have already
established and, thereby, enrich the integrated dataset with information that is not
inherent to the source data.

In establishing links with external geographic datasets, the classes that have potential
to be connected are first specified. Subsequently, the instances belonging to these
classes are linked together, by means of the owl:sameAs property. In particular, the
individuals of the classes schema:AdministrativeArea, gtfs:Agency, and dbpedia-
owl!:City are connected with those belonging to the equivalent classes of DBPedjia,
whereas the instances of wgs84_pos:SpatialThing are linked to the individuals of the
same class in the GeoNames ontology. The LODRefine distribution of OpenRefine,
along with its RDF extension, are used again (see also Sect. 3.3.3), yet in this case for
performing the data interlinking. The links are included in the ROUTE dataset and are
identified by owl:sameAs relationships. For example, the following RDF code describes
the establishment of a link between the administrative region of “Glyfada” - in its
Romanized format - and the corresponding instance of the same resource in DBPedia
(in Greek):
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https://datahub.io/dataset/dbpedia (Accessed on February 22, 2016).

https://datahub.io/dataset/geonames-semantic-web (Accessed on February 22, 2016).
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<rdf:Description rdf:about="https://route-owl.github.io/resource/ad_area/
GLYFADA">
<rdf:type rdf:resource="http://schema.org/AdministrativeArea" />
<rdfs:label>GLYFADA< /rdfs:label>
<owl:sameAs>http://el.dbpedia.org/resource/Mudddas /owl:sameAs>
</rdf:Description>

In total, 124 links are generated to the DBPedia dataset, whereas 15,956 links are
established with the GeoNames dataset (Table 8). By establishing those links, the
already existing relations in the aforementioned datasets, enable the original data

- e.g.in relation to the latitude and longitude of start and end points, as well as the
various intermediate stops in different administrative areas - to be connected with
resources about the census population (DBPedia) and instances describing nearby POls
(DBPedia and GeoNames). The resulting ROUTE linked dataset currently complies with
all the Linked Data criteria and, therefore, constitutes a 5-star dataset (see Sect. 3.2.4).
However, to enable public access and usage by different stakeholders it remains to be
published as Linked Open Data to the LOD cloud.

TABLE 8 Links with other datasets.

Instances of ROUTE class  Type of link Instances of external Links
datasets

schema:Administra- owl:sameAs DBPedia 120

tiveArea

gtfs:Agency owl:sameAs DBPedia 3

dbpedia-owl:City owl:sameAs DBPedia 1

wgs84_pos:SpatialThing i owl:sameAs GeoNames 15,956

Publishing to the LOD Cloud

In order to enable the exploitation of the generated linked dataset by third-party
stakeholders (e.g. policy makers, urban planners etc.), so that it could be used in urban
modeling or other related applications, the final step is to publish it - along with its
ontology and its external links — on the Web and more specifically to the LOD cloud. As
mentioned in Sect. 3.3.1, the various source data that comprise the integrated dataset are
provided under an open license, namely Creative Commons Attribution 3.0, which allows
further adaptation, transformation, reuse, republication, and sharing. As a consequence,
the generated Linked Data are also compliant with the Linked Open Data principles and
can, therefore, be published to the LOD cloud. To this end, aside from the integrated
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dataset, the domain ontology, and the external links, all documentations have to be made
available online, prior to being featured in the LOD cloud (Radulovic et al., 2015).

Ontology and RDF Dataset Publication on the Web

To make the integrated dataset publicly available and to allow different stakeholders
take full advantage of its potential, the generated linked dataset and the corresponding
ontology are published under a Creative Commons Attribution 4.0 license?. The online
publication of the ontology? can facilitate the understanding of the concepts to which
the source data are mapped and the relationships that enable their combination.
Moreover, it could be reused partially or fully for mapping relevant data from different
sources or domains, in the same way that the demonstrated dataset reuses concepts
from external knowledge models.

In Sect. 3.2.3, it has been described that the real potential of integrated RDF datasets
lies not so much in the online availability of the files per se, but rather in the possibility
to query those data and extract useful (combined) knowledge. To this end, the
generated triples, together with the external links, are first stored in an online RDF
repository - namely, the OpenLink Virtuoso server?* - to allow public access and
retrieval. Following this, a dedicated SPARQL Endpoint?*is set up for querying the
integrated data.

Since the ROUTE dataset comprises a fusion of the nine different data sets, it enables
the performance of more complex queries, as well as the retrieval of information

that traverses the individual source data. For instance, besides simple queries such
as "How to get from an origin (route:StartPoint) to a destination (route:EndPoint)

and by which means of transport (gtfs:RouteType) within a specific period of time
(time:DateTimelnterval)?”, one can extract information about “How many stops
(gtfs:isStop) exist within a specific area/bounding box (schema:AdministrativeArea

/ gtfs:Shape)?”, or "Which stops (gtfs:isStop) nearby specific POIs (link to dbpedia-
owl:locationOf) in an area (schema:AdministrativeArea) are accessible to disabled
people (gtfs:WheelchairBoardingInformation)?".
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https://creativecommons.org/licenses/by/4.0/

As mentioned in Sect. 3.3.2.3, the implemented ROUTE ontology is available online as a file at: https://route-
owl.github.io/ontology.owl

http://virtuoso.openlinksw.com (Accessed on February 23, 2016).

https://route-owl.github.io/sparql (Accessed on February 23, 2016).
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§ 3.3.5.2

Documentation Accessibility

Next to the online availability of the ontology and the linked dataset, ensuring public
access to their respective documentations is particularly crucial, when it comes to
increasing the reuse potential in modeling, planning, or decision-support applications.
Although there are certain similarities to the logic governing API documentations for
various software platforms, the main difference in the case of Linked Open Data is that
the documentation accompanying ontologies and RDF datasets has to be readable not
only by humans but also by machines. Following Semantic Web and LOD principles,

it needs to be possible for both people and computational systems to understand

the rationale behind semantically integrated data and the models governing the
relationships between concepts.

In this respect, the human-readable documentation of the ROUTE ontology and
dataset is semi-automatically generated, using the Wizard for Documenting
Ontologies (Widoco)?. The outcome of this process is an HTML document that
contains the description of the ontology, drawing on its machine-readable hierarchy
and axioms. This semi-automatic process further enables on-the-fly completion of the
documentation, when future modifications occur (e.g. by introducing new components
to the ontology). In addition to this, the machine-readable documentation is generated
by means of describing the dataset and the ontology in both DCAT?® (Data Catalog
vocabulary) and VoID# (Vocabulary of Interlinked Datasets) vocabularies (see Appendix
B). Both of these descriptions comprise W3C standards. The former refers to an RDF
vocabulary for describing integrated data and for enabling them to be discovered and
processed by machines. The latter is also an RDF vocabulary for describing metadata of
integrated datasets, as well as the links with external resources. VoID is also intended
forincreasing accessibility to the generated linked dataset. All aforementioned
documentations are publicly-available online®.
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https://github.com/dgarijo/Widoco (Accessed on February 23, 2016).
https://www.w3.org/TR/vocab-dcat/ (Accessed on February 23, 2016).

https://www.w3.org/TR/void/ (Accessed on February 23, 2016).

The human-readable documentation of the ROUTE ontology and dataset is available at: http://osmosys.
hyperbody.nl/files/ROUTE _doc. The machine-readable documentations in DCAT and VoID vocabularies are

respectively available at: http://osmosys.hyperbody.nl/files/dcat and http://osmosys.hyperbody.nl/files/void,
and are also available in Appendix B.
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Registration into an Urban Linked Data Catalog

and Publication to the LOD Cloud

After publishing the human- and machine-readable documentations of both the
ontology and the RDF dataset, the generated linked dataset can be published to the
LOD cloud, so that other datasets can create new links with it. Although a 5-star linked
dataset (the level reached in Sect. 3.3.4) already contains the combined knowledge
from the various source data and the links with other semantically enriched datasets,
its exploitation by a wider community of stakeholders is ensured only through its
publication as LOD. In achieving this goal, it needs to secure (a) the way in which it will
be discovered on the Web, and (b) the compliance with the LOD cloud requirements.

In general, the predominant mechanism for discovering documents on the Web is

by means of a certain search engine. This discovery process is further facilitated by
sitemaps, which describe the content and structure of web pages. In the context of the
Semantic Web, specialized sitemaps can be used to inform both generic and data-
oriented search engines about an online RDF dataset.

In the case of the example presented here, the sitemap4rdf? tool is used for
automatically creating a sitemap of the published dataset. The entire set of URIs
contained in the RDF data is extracted from the dedicated SPARQL Endpoint (see Sect.
3.3.5.1) and used for producing the XML sitemap document, which is then uploaded to
both generic and data-oriented search engines. In addition to this, and in order for the
dataset to be more accessible to city stakeholders, the linked dataset is registered into
a specialized catalog, dedicated to urban linked data, namely the READY4SmartCities=°
catalog. This particular choice is driven by the domain-oriented nature of this catalog
for Linked Data, which differentiates it from other more popular, yet rather generic,
data catalogs.

Lastly, to further raise awareness about the newly generated dataset, a validation against
the fulfillment of the LOD cloud publication requirements is necessary to be performed.
To this end, the dedicated LOD cloud Validator®! is used to assess the completeness of the
generated dataset, so that it appears in the next version of the LOD cloud diagram?2.
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http://lab.linkeddata.deri.ie/2010/sitemap4rdf/ (Accessed on February 24, 2016).
http://smartcity.linkeddata.es/datasets/ (Accessed on February 24, 2016).

http://validator.lod-cloud.net/ (Accessed on February 24, 2016).

http://lod-cloud.net (Accessed on February 24, 2016). It should be noted that the ROUTE dataset does not still

appear on the LOD cloud diagram, as the last update of the latter has occurred on August 30, 2014, whereas
ROUTE has been published on June 15, 2015.
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The inclusion in the LOD cloud diagram increases the visibility potential of the linked
dataset and, therefore, the possibility of other semantically enriched datasets to
establish links with it.

The growing availability of urban data from various sources opens up new perspectives
in understanding aspects of city systems that have hitherto been difficult to study.
However, the integration of heterogeneous data remains a significant challenge.

In addition to presenting various approaches to interoperability, this chapter addressed
the above-mentioned challenge by designing a methodology for the transformation of
heterogeneous urban data into multidimensional linked urban data. The methodology
follows an ontology-based data integration approach and accommodates a variety

of semantic (web) and linked data technologies. Each of the steps it comprises, was
demonstrated through a use case, using real-world datasets from multiple sources.
The use caseillustrated how various collected sets of large-scale spatiotemporal data
from three different sources, covering the entire public transport network of the city

of Athens, Greece, can be fused together into a semantically rich dataset. It further
presented how to establish links with external geo-data and how to eventually publish
the resulting linked dataset to the LOD cloud.

The methodology comprises three distinct, yet interrelated, processes: (a) semantic
integration of heterogeneous source data, (b) interlinkage with external datasets from
different or relevant domains, and (c) publication as LOD to allow exploitation by third
parties. Each of these stages resembles different levels of data openness, reusability,
reproducibility, connectivity, and retrieval. Semantic integration may refer to the
fusion of local data that can be either open or proprietary and that stem from different
sources, though mostly adhering to a certain domain. The outcome of this process,
which is an integrated dataset, can be further linked to other integrated datasets from
different domains. Yet again, the resulting linked data can be either proprietary (and
only be exploited within a group of stakeholders) or publicly distributed. Contrariwise,
the publication of integrated datasets as LOD requires that the former can be freely
retrieved, reused, republished, transformed, connected to other datasets, and
exploited in various applications. As a result, the latter stage ensures the highest degree
of openness, reproducibility, and reusability by a wider community of stakeholders.

This methodology can be replicated with relatively low effort and be applied (with
minor adjustments) to different types of urban data, irrespective of the chosen sources.
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Moreover, the fact that it is based on ontologies enables the semi-automatic iteration
of the data mapping for any future updates of the source data, provided that the latter
maintain their initial schemas. This can be beneficial for contemporary social urban
data, which are characterized by very frequent update rates. Besides minimizing data
redundancy and ensuring semantic interoperability, ontologies can also be used as

a basis for querying and retrieving the resulting linked datasets, e.g. from SPARQL
endpoints.

One of the major limitations encountered, especially with regard to the interlinkage
process, is that the LOD cloud presently incorporates more generic datasets than
domain-specific ones. Even though linked geospatial data are becoming increasingly
available - such as GeoNames and Linked Geo Data (Stadler, Lehmann, Hoffner, &
Auer, 2012) - more specificintegrated datasets pertinent to human mobility behavior,
social activity in cities, or flows between urban systems are hardly available. This has
hampered the creation of meaningful links with external datasets, thus limiting the
number of potential interconnections.

Another important difficulty concerns the legal terms accompanying source data.
Finding appropriate data for the applied example was tremendously difficult and

the available options were very limited. Despite the fact that a growing number of
organizations worldwide are providing their internal data as open data, there are only a
few cases where the licenses clearly specify whether or not the data can be processed,
republished, and reused in different applications. This is crucial when aiming to publish
urban data as LOD, as it could hinder their applicability to other domains.

Nevertheless, if an increasing number of urban data referring to various facets of the
city (e.g. social, economical, spatial etc.) are linked with one another, contemporary
analytics, simulation, and decision-support systems can be highly benefited. As the
analysis of urban dynamics requires the simultaneous consideration of various aspects
of the urban environment, data integration and interlinkage becomes paramount.
This would allow stakeholders to perform complex queries and extract knowledge that
exceeds the context of the source data. The methodology that has been presented in
this chapter could be helpful in this regard.
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§ 4.1

Designing and Implementing
Tools for the Visual Exploration of
Multidimensional Linked Urban Data*?

The nature of the analysis of urban dynamics is inherently multidimensional, in the
sense that it requires the simultaneous consideration of spatial, social, and temporal
parameters. Recent developments in complexity theory have reinforced the notion

of cities as complex systems (Bettencourt, 2013; Portugali, 2011; Schlapferet al.,
2014). Cities in fact incorporate a multiplicity of interrelated networks, operating
atvaried spatial and temporal scales. Examples include the physical structure of

the urban fabric, land uses, transportation, organizations, infrastructure, social
networks of people, social interactions and activities, among many others. In
studying and analyzing these networks, the key challenge is to understand the various
relationships between the elements that comprise them, not only in terms of how
these relationships are structured, but also in terms of how they evolve over time.

To achieve this, data from different sources need to be fused together. The previous
chapter addressed the challenges pertaining to data integration, and introduced a
comprehensive methodology for interlinking datasets from different domains, in order
for multidimensional linked urban data to be generated that are more appropriate for
the analysis of urban dynamics.

Nevertheless, the generation of integrated and linked urban data still remains a non-
trivial task among urban planners, researchers, and policy makers. This is evident
from the present scarcity of domain-specific urban datasets on the LOD cloud, as
well as from the limited amount of ontologies related to cities (Benslimane, Leclercq,
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This Chapter is largely based on the following publications:

Psyllidis, A. (2015). Ontology-Based Data Integration from Heterogeneous Urban Systems: A Knowledge Repre-
sentation Framework for Smart Cities. In Proc.: 14th International Conference on Computers in Urban Planning
and Urban Management (CUPUM 2015), Cambridge, MA, USA: MIT, pp. 240:1-21

Psyllidis, A. (2015). OSMoSys: A Web Interface for Graph-Based RDF Data Visualization and Ontology Browsing.
In P. Cimiano, F. Frasincar, G.-]. Houben, & D. Schwabe (Eds.) (Vol. 9114). Switzerland: Springer International
Publishing Switzerland, pp. 679-682
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Savonnet, Terrasse, & Yétongnon, 2000; Falquet et al., 2011). This can be partly
explained by the stakeholders’ lack of familiarity with data integration and interlinkage
technologies. As a consequence, the majority of urban data remain stored in disparate
silos and any fusion of information across sectors is carried out in a labor-intensive,
manual fashion.

As the available sources of data for cities increase and the necessity for interoperable
systems becomes crucial, the adoption of ontology models and other semantic (web)
technologies for data integration and interlinkage becomes pivotal. It is argued that
city stakeholders need to be encouraged to engage in the design and development
of ontologies, as well as to increasingly consume multidimensional linked data for
analysis, planning, and decision-making purposes. At present, ontology engineering
experts are, to a great extent, engaged in performing these tasks. However, they lack
the domain knowledge required for creating essential correlations between systems.

Although the methodology that was developed in the previous chapter provides a
means to integrate data from multiple sources, it requires one to be familiar with the
formalisms of ontologies and other semantic technologies. Therefore, it is essential
to provide tools that would enable and encourage city stakeholders to leverage the
potential of integrated and linked data, and would make the communication between
them and other experts less cumbersome.

To address this challenge, this chapter presents the design and implementation of a set
of web-based tools for the visual representation of ontologies and multidimensional
linked urban data. The tools provide graphical user interfaces for the visual
representation, browsing, and interactive exploration of both ontologies and linked
data. The use of different visualizations - in the form of interactive web documents and
force-directed graphs - aim to support the adoption and consumption of linked urban
data, without requiring extensive knowledge of the technology stack that underpins
them. Therefore, the tools provide easy-to-use interfaces, accessible to a wide range of
users, either experienced or amateur ones.

To further support the production of multidimensional linked urban data, an upper-
level ontology is developed that formally describes and represents the relationships
between the various elements of urban networks, pertinent to both the social and
spatial sphere of urban systems. Individual datasets with heterogeneous attributes
can be mapped to the aforementioned ontology and fused into a single dataset that
combines the different attributes together.

The chapter first reviews existing domain ontologies pertinent to cities and planning, as
well as related approaches to ontology visualization. The limitations of existing work set
the requirements for the design of the proposed tools. Next, the chapter describes their
architecture and the design of the upper-level ontology of urban networks. The latter, in
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combination with the outputs of the previous chapter (i.e. the ROUTE ontology and the
linked dataset), are used as benchmark tests for the tools. The chapter concludes with
reflections on the potential and limitations of the presented set of tools.

The role of ontologies in semantically describing real-world entities and the
relationships between them has been emphasized in the previous chapter. In the

last decade, mainly stimulated by the diversity of available data sources, there has
been a growing use of ontologies in several domains of knowledge, as a standard for
the integration of various domain data. Unlike other scientific fields, there is a lack of
domain ontologies that specifically cater to urban analysis and planning. The limited
existing examples comprise ontologies that represent concepts pertinent to a specific
facet of the urban environment (e.g. transportation networks, land uses, spatial
geometry of the urban fabric etc.). Examples of ontologies combining more than two
facets are rather scarce, to date.

In providing a more generic framework for urban information management, one of
the first and few examples existing hitherto, is the one proposed by Benslimane et

al (Benslimane et al., 2000). The developed framework does not establish a single
domain ontology merging information from various urban networks together. Instead,
it sets the foundations for a multi-layered modeling system, in which each layer
corresponds to a specific domain ontology, configured by external experts (e.g. urban
planners). These ontologies are then mapped to a top-level ontology that defines

the relationships between the layers. However, in order for the framework to operate
properly, there is a need for tools that would allow the various parties involved to
collaborate in the generation and evaluation of each ontology representing a specific
urban network, which are not developed in this particular work. In a more recent
example, Bellini et al. (Bellini, Benigni, Billero, Nesi, & Rauch, 2014) introduce an
ontological model for smart city services, which fuses concepts related to public
administration, street features, POIs, and transport networks together with data from
various sensor systems and time-related entities.
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Montenegro et al. (Montenegro, Gomes, Urbano, & Duarte, 2012) introduce an
ontology for land use planning. Having as a starting point the Land Base Classification
Standards (LBCS) model, established by the American Planning Association, the
ontology provides semantically annotated land use descriptions of spatial data, to
allow enhanced integration and reuse possibilities across GIS systems. In semantically
enriching 3D models with integrated information about the physical geometry of the
urban structure, Métral et al. (Métral et al., 2009) present an ontology of the CityGML
model, which is an OGC standard for storage and exchange of virtual 3D city models
(Groger, Kolbe, Czerwinski, & Nagel, 2008). Based on this, the ontology incorporates
both geometrical and topological concepts of urban objects (e.g. vegetation, water
elements, geometrical features of buildings, topological relations between spatial
geometry objects etc.). In addition to this, a first instance of the Ontology of Urban
Planning Processes (OUPP) is also demonstrated, yet only focusing on issues related to
soft mobility.

A further collection of ontologies, specifically created for modeling systems related

to the domains of urban planning and development, is presented in (Falquet et al.,
2011). The demonstrated cases cover a wide range of domains, from urban mobility to
urban morphology, with varying levels of completeness. In a more recent case, Poveda-
Villalén et al. (Poveda-Villalén, Garcia-Castro, & Gémez-Pérez, 2015) introduce

a comprehensive and structured catalog that accumulates existing ontologies in
domains related directly or indirectly to cities, ranging from energy to building
geometry and air quality. Such collections can be particularly useful for discovering and
reusing existing models in the ontology development process.

Approaches to Ontology Visualization

The growing number of ontologies in various scientific fields has generated an equally
increasing demand for visualization methods and tools. This necessity becomes even
more significant as users with varying levels of expertise are progressively involved
with the process of ontology development and evaluation. Visual representations of
semantic models could also facilitate the work of ontology engineering experts, who
are faced with the growing volume and complexity of the various components that
comprise ontologies (i.e. classes, properties, instances, restrictions, axioms etc.). A
variety of methods and tools for the visual representation of ontologies have been
developed to date (Katifori, Halatsis, Lepouras, Vassilakis, & Giannopoulou, 2007).
The visualization and interaction techniques used in each case, largely depend on

the application area and the target user groups. Without intending to provide a
comprehensive overview, this section focuses mainly on the presentation of work that
closely relates to the tools described later in this chapter.
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In general, the most frequently used methods in ontology visualization include

2D or 3D graphs of various layouts, tree diagrams, nested sets, UML diagrams,

and knowledge graphs, to name a few. Graph-based visualizations are particularly
interesting to the focus of this chapter. This type of visual representation is also
consistent with the nature of OWL ontologies, which are in fact extensions of RDF
graphs and, hence, RDF triples. As mentioned in the previous Chapter (Sect. 3.2.3),
graph nodes can represent the various subjects and objects (classes and instances),
whereas connecting lines can illustrate the predicates (object and data properties) of
the triples.

A widely used tool for graph-based ontology visualization is OntoGraf (S. Falconer,
2010). The tool mainly owes its popularity to the Protégé ontology editor (Stanford
University), as it comprises a plugin for the platform. Although the tool offers many
possibilities for visualizing several ontology components (e.g. classes, sub-classes,
individuals, domain/range object properties etc.), the fact that it is dependent to

a sophisticated ontology editor constitutes a major obstacle for non-expert users.
Similar limitations apply to the example of OWLPropViz (Wachsmann, 2008). The two
aforementioned examples refer to 2D graph visualizations. Conversely, the Onto3DViz
(Guo & Chan, 2010) is an attempt to represent ontologies in a three-dimensional
graph. Despite the advantage of being a standalone application, rather than a plugin
for a platform, it incorporates a very limited amount of ontology components and does
not give the possibility to interactively search specific entities. Besides desktop-based
applications and plugins, an example of a web-based service for ontology visualization
is FlexViz, presented in (S. M. Falconer, Callendar, & Storey, 2010). In addition to
allowing online access, it also provides various layout, navigation, search, and export
functions, which make it an interesting case of graph-based ontology viewer.

Alternative graph-based approaches that further focus on the visualization of RDF data
have also been developed recently. An early example is RelFinder (Heim, Hellmann,
Lehmann, Lohmann, & Stegemann, 2009) for interactively searching and browsing
instances of ontology classes and their relationships. In a similar way, LODWheel
(Stuhr, Roman, & Norheim, 2011) focuses mainly on RDF data visualization, yet it is
only standardized for datasets stemming from DBPedia. A more recent and advanced
example in this regard is LodLive (Camarda, Mazzini, & Antonuccio, 2012), which
allows data that are retrieved from SPARQL endpoints to be visualized in a dynamic
graph-based fashion, while also supporting various types of ontology components.
Lastly, one of the latest examples hereof, which has been developed later than the

set of tools presented in this Chapter, is the Visual Notation for OWL Ontologies
(VOWL) (Lohmann, Negru, Haag, & Ertl, 2016). The latter offers visual representations
of ontologies, based on a force-directed graph layout covering several ontology
components, and is implemented as both a plugin for the Protégé ontology editor and
a web-based interface. An overview of the aforementioned tools for ontology and RDF
data visualization is presented in Table 9.
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TABLE 9 Tools for ontology (OWL) and structured data (RDF) visualization.
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top-based
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top-based

Visualization

2D graphs

OWL/RDF

OowL
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Editing

Filtering &
Editing

Interactive

Navigation

Yes

Source

Wachsmann
(2008)

FlexViz

Standalone

Web-based

2D graphs

owL

Filtering &
Editing

Yes

Falconeretal.
(2010)

LODWheel

Standalone

Web-based

2D graphs

RDF

Filtering &
Editing
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Stuhretal.
(2011)

Standalone
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2D graphs

OowL

Filtering &

Lohmann et

VOWL Yes
& Protégé top-based Editing al. (2016)
plugin
§ 4.3 AFramework of Web-Based Tools for the Visual Exploration

122

of Ontologies and Multidimensional Linked Urban Data

The nature of the analysis of urban dynamics is inherently multidimensional, in the
sense that it requires the simultaneous consideration of spatial, social, and temporal
parameters. To achieve this, data from different sources need to be fused together.
The previous chapter addressed the challenges pertaining to data integration, and
introduced a comprehensive methodology for interlinking datasets from different
domains, in order for multidimensional linked urban data to be generated that are
more appropriate for the analysis of urban dynamics. Here, the focus is on providing
mechanisms to facilitate the understanding and consumption of multidimensional

linked urban data for analysis, planning, and decision-making purposes.
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To this end, the OSMoSys framework®* is presented, comprising a set of web-

based tools for the interactive visualization and exploration of ontologies and
multidimensional linked urban data. The goal of the proposed framework is to
potentially facilitate the consumption and employment of linked urban data in city
analytics. In achieving this, OSMoSys consists of an interface for the visualization of
RDF data and OWL ontologies, using a force-directed graph layout, as well as of an
ontology browser for interactive navigation through the hierarchy of classes, properties,
and individuals, using a multi-pane user interface (UI). In addition, OSMoSys is
supplemented by an upper-level ontology that describes the different networks in cities
and relationships between their elements, based on relevant established standards
and roadmaps. The ontology canin turn be used as a reference framework in domain-
specific ontologies that model resources pertinent to a particular facet of the urban
environment. Moreover, OSMoSys supports uploading of custom ontologies and
integrated or linked datasets, so that non-experienced users understand their structure
(through visual exploration), evaluate their completeness, and potentially exploit them
in other applications (Figure 8).

Unlike existing tools (see Sect. 4.2.2) that depend on specialized software or require
installation, the proposed tools are fully accessible through the Web and rely on open-
source technology. The following paragraphs describe, first, the technology stack used
in OSMoSys and, then, its various components.
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The OSMoSys framework is available online at: http://osmosys.hyperbody.nl

Designing and Implementing Tools for the Visual Exploration of Multidimensional Linked Urban Data



Web Ontology

Browser

RDF Graph '&SMDS}{S

Visualization

Background

Ontology

FIGURE 8 Components of the OSMoSys framework.

§ 4.3.1 Technology Stack

A key requirement in the development of the proposed framework is that OSMoSys
is accessible to everyone. Moreover, it should provide an easy-to-use and intuitive
interface, so that it stimulates mainly non-experienced users to benefit from its
features, while also making it possible for other users to further modify and extend
its functionality. In line with these requirements, OSMoSys makes use solely of open
software and programming languages. Additionally, it is implemented as a web-
based platform, in an attempt to overcome the limitations that characterize plugins,
especially in terms of accessibility.
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The overarching framework of OSMoSys is implemented using JavaScript, HTMLS5,
(CSS3, jQuery®, and to a lesser extent PHP=¢. JavaScript is specifically chosen for its
compatibility with all contemporary web browsers, without the need for additional
plugins. The graph-based RDF/OWL visualization interface uses the Sigma.js JavaScript
library®’, which is dedicated particularly to graph drawing. In generating the force-
directed graph layout, the Yifan Hu multilevel algorithm is employed (Hu, 2005). The
rationale of this algorithm lies in the dynamic distribution of graph nodes, according to
the conceptual proximity of the concepts they represent. The Web Ontology Browser is
implemented using JavaScript, OWLDoc*®, HTML5, and CSS3. The upper-level ontology
has been created using the Protégé ontology editor. OSMoSys receives as input RDF
data - either retrieved from SPARQL endpoints or uploaded directly to the platform
from local files - and OWL ontologies, which are converted into JSON format prior to
being visualized, so as to be easily integrated into the JavaScript library (Table 10). The
converted datasets and ontologies are then stored in a SQL Server database. Both graph
visualization and web ontology browser are created from the JSON files at runtime.

TABLE 10 OSMoSys - Technology stack.

Component Programming language / Software

Overall OSMoSys framework JavaScript, HTMLS, CSS3, jQuery, PHP

RDF/OWL graph visualization JavaScript (Sigma.js library), HTMLS, CSS3, jQuery
Web Ontology Browser (WOB) JavaScript, OWLDoc, HTMLS, CSS3

OSMoSys upper-level ontology Protégé

Interactive Graph-Based Visualization of RDF Data and OWL Ontologies

OSMoSys visualizes integrated and linked datasets, as well as their underlying
ontologies, as networks of nodes and links (or edges), using a force-directed graph
layout. In the case of ontologies, classes (either super- or sub-classes) and their
instances areillustrated as nodes, whereas properties (object, data, and annotation
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https://jquery.com. Accessed March 10, 2016.
http://php.net. Accessed March 10, 2016.
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ones), which in fact correspond to the relationships between the classes, are depicted
as edges connecting the nodes together. Similarly, in the case of integrated and linked
datasets, subjects and objects of an RDF statement (see Sect. 3.2.3) are displayed as

nodes, whereas predicates (relationships) as edges (Figure 9). This is also in agreement

with the RDF graph notation (Schreiber & Raimond, 2014). In this way, a more
intuitive and straightforward illustration of the relationships between various local
data, or between real-world objects of the urban fabric, is provided, as opposed to the
intricate, machine-oriented RDF serializations.

To further increase readability, the graph incorporates varied node sizes. These
variations may indicate either the position of the class in the ontology hierarchy
(top-classes appear larger than sub-classes) or the amount of instances that belong
to it (larger node size indicates a larger number of class instances). In the case of RDF
datasets, the size of nodes is proportional to the amount of established links with
other nodes. Therefore, a data instance with multiple links to other instances will be
illustrated as a node of a larger size. In this way, concepts, objects, or data elements
of greater significance (or, at least, centrality) are instantly recognized. Besides node
variation, the force-directed layout algorithm clusters those nodes that either have
a large number of links to other nodes or contain several instances, and places them
more centrally, as opposed to smaller nodes, which are placed at the outskirts of
the graph.

FIGURE 9 General overview of the web-based interface for ontology and RDF data visualization.
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In addition to the above, the OSMoSys graph supports zooming. In the initial state

of the graph, users have an overview of the entire network. As they zoom in, the

graph displays different levels of detail, gradually displaying the names of classes or
instances, or sometimes depending on the dataset, their complete URIs. This process is
generally called semantic zooming. This allows users to understand the structure of the
entire network, as well as to focus on specific objects and relationships. In addition to
zooming, the interactive graph also supports panning, so that users easily navigate the
graph by using their mouse or trackpad (Figure 10).

FIGURE 10 Semantic zooming function.

However, a common limitation of network visualizations is that they can become quite
messy as the number of nodes increases. This may essentially hinder the readability
and, hence, the visual discovery of correlation patterns between the nodes (Michael
Batty, 2013b). To overcome this obstacle, the OSMoSys graph implements a set of
additional features. In particular, when a user hovers over a node, its corresponding
label as well as the nodes that are connected with it are highlighted, irrespective of the
zoom level (Figure 11). Moreover, when a particular node is selected, the graph shows
anisolated view of the chosen object and its links. Thus, the global network minimizes
into a local network, consisting only of a certain chosen entity and the elements that
are directly linked with it (Figure 12). When one of the other linked nodes is selected,
its corresponding local network of relations appears. Users can switch between the
global and the local structure of the network at any time, by using the corresponding
options provided by the UL In addition to the above, the selection of a highlighted
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node activates a pop-up sidebar, containing detailed information about its attributes
(e.g. the name of a class orinstance, the description of an object, URIs etc.). Moreover,
it further shows a list of all nodes/objects that are linked with the selected node.
Therefore, aside from directly selecting nodes on the graph, a useris also enabled to
navigate the different nodes by using the list included in the sidebar (Figure 13).

To further increase the node discovery potential and the readability of complex graphs,
OSMoSys implements search and grouping functions. Thereby, a user is given the
possibility to perform keyword search, without having to know necessarily the full name
of a class orinstance. The search component allows users to enter in the corresponding
field at least three letters of a class or instance in focus, and subsequently all relevant
results are listed right below the search field. In this way, a user may select any of the
provided search results (in the case that there are multiple options) and, thereby, focus
on the certain node and its immediate links. In addition to the search component,
users are also enabled to group similar nodes of a certain type together. For instance,
one is given the possibility to group together the entire set of super-classes included

in an ontology hierarchy or those instances that contain owl:sameAs links to external
data resources. Since both search and group functions are used for the discovery

and selection of certain nodes and their relationships, they also activate the pop-up
sidebar, mentioned in the previous paragraph (Figure 13). In the case of ontologies,
where nodes represent classes or instances, the sidebar further contains links of the
selected class orinstance to the web ontology browser, which is described in the
following section.

FIGURE 11 Highlighted node label on mouse over.
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FIGURE 12 Isolated view of a selected node (i.e. class or data record) and its immediate links.

FIGURE 13 Side pane, zoom controls, “search” and “group” features of the visualization interface.
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§ 4.3.3 Web Ontology Browser

A key component of the urban data integration and interlinkage procedure is the
development of domain ontologies. The latter are used for modeling the concepts and
objects of a particular domain (e.g. social networks, public transport networks etc.)
and for mapping data from heterogeneous sources to these concepts, as described

in the previous Chapter. The process of designing, developing, implementing, and
evaluating ontologies, requires the involvement of experts in the domain that is
modeled, to reach consensus on the way the various concepts and their relationships
are described and represented. Having an understanding of the knowledge model is
crucial in establishing links between sources within and across domains, as well as

in making sense of how different objects or systems relate to one another. However,
ontology navigation and evaluation by domain experts are non-trivial tasks. As the
majority of ontologies are presently designed and implemented by ontology engineers,
domain experts are faced with the task of evaluating the developed models for

their completeness, conciseness, and intelligibility. To date, this process demands
familiarity with ontology editing platforms, thereby hampering the involvement of and
collaboration between non-experienced users.

In overcoming this obstacle, the OSMoSys framework incorporates - in addition to

the interactive visualization interface - a web ontology browser (WOB) for navigating
the components of an ontology and their entire set of metadata (i.e. annotations,
object and data properties, individuals, descriptions, URIs, namespaces etc.), using

a multi-pane layout (Figure 14). Besides the layout, the main difference between the
WOB and the interactive visualization interface, is that the former provides a complete
overview of all the components, properties and annotations comprising an ontology
that is uploaded to the system. Unlike the graph-based visualization component,
which also supports the representation of integrated and interlinked datasets, the WOB
solely caters to ontologies. However, for users who aim to visualize an integrated RDF
dataset, it is also possible to upload the domain ontology, to which the source data are
mapped. Thus, the WOB is complementary to the interactive visualization component
of OSMoSys. Having the entire set of ontology modules documented in the WOB, it
prevents the network visualization from becoming cluttered. At present, the WOB does
not support editing, as it is mainly intended for ontology evaluation and exploration by
domain experts, who may have limited, if any, knowledge of ontology engineering. As
is the case with the entire OSMoSys framework, the WOB does not require any plugin
installation and is accessible by virtually all modern browsers.

The layout of the WOB is organized into three panes, each one providing different
navigation possibilities and views of the ontology. More specifically, the upper-left pane

lists the different ontology entities into groups of classes, object, data, and annotation
properties, individuals, and data types. When any of the the aforementioned groups is
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Contents

All Classes (121)

selected, a list containing all the entities corresponding to the selected group appears
in the lower-left pane of the layout. The various entities are listed in alphabetical order.
Users are given the possibility to return back to the general overview of the ontology
atany time, by selecting the corresponding option in the upper-left pane. The main
pane, covering the major part of the layout, accommodates the entire set of semantics,
descriptions, and annotations of a selected entity (e.g. a class), in addition to its
relationships with other ontology modules. Users can interactively browse through the
various entities (i.e. classes, object and data properties etc.) and explore relationships
between concepts, either through the side-pane indexes or by directly clicking on any
term included in the main pane. Therefore, users with different levels of expertise can
explore in detail and evaluate a given ontology and the domain it models. Moreover,

in the case where some of the concepts are directly imported from external ontologies
or are aligned with terms of external structured vocabularies, the WOB provides
hyperlinks to the URIs of these resources or the documents describing them. Thereby,
it could assist in discovering new interrelations, supporting the fundamental idea
behind the Web of Data, as well as the generation process of multidimensional linked
urban data.

Equivalents (1)

Superclasses (7)

Usage (6)

FIGURE 14 Interface and features of the Web Ontology Browser (WOB).

131

Designing and Implementing Tools for the Visual Exploration of Multidimensional Linked Urban Data



132

Developing an Ontology of Urban Networks

Besides the diversity of data sources about cities, it was previously described (see Sect.
4.2.1) that a variety of ontologies are being increasingly implemented to model and
conceptualize different facets of urban systems. The resultis a collection of several,
mainly task-oriented, knowledge models that capture part of the relationships
between the elements that comprise cities. It would therefore be useful to establish an
overarching knowledge model, incorporating generic concepts about networks in cities
and the ways their various facets could relate to one another.

Given this assumption, the OSMoSys framework implements an upper-level ontology
of urban networks. Here, urban networks primarily refer to various types of networks
between the elements comprising a city (also referred to as intra-urban networks),
rather than networks between urban systems (also referred to as inter-urban
networks). However, the knowledge model can easily be extended to also include
networks at regional, national, orinternational scales. The ontology defines and
axiomatizes general concepts about urban networks (e.g. social, spatial, economic,
information networks etc.), the respective data sources and technology enablers, in
addition to establishing a set of potential relationships between them. These are in
factindicators of relationships and are by no means comprehensive. In turn, domain-
specific ontologies can reuse the generic concepts offered by the proposed knowledge
model, to establish richer interrelations at different scales. Therefore, the goal of the
proposed ontology is to serve as a generic, shared conceptualization for the coupling of
urban networks to facilitate the generation of multidimensional linked urban data, and
as a common foundation for relevant domain-specific ontologies.

Ontology conceptualization

In conceptualizing the proposed ontology, an initial simplified model containing the
main concepts and - part of - the relationships between them is first defined. To

this end, relevant terms are extracted from recent European and American standards
about cities, planning, urban governance and management, and integrated into the
knowledge model. The aforementioned standards provide generally agreed definitions
of concepts pertinent to these domains. The standards, vocabularies, and roadmaps
from which the majority of terms are extracted are namely: the European Spatial
Planning Observation Network - ESPON final report (ESPON, 2007), the British
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Publicly Available Specifications (PAS) on the Smart Cities Vocabulary (Institution,
2014a), and on the Smart City Concept Model (Institution, 2014b), the Operational
Implementation Plans of the European Innovation Partnership on Smart Cities and
Communities (Communities, 2014), and the Smart Cities Readiness Guide (Council,
2014). The transfer of concepts included in standards to a knowledge model largely
benefits from its reproducibility and extensibility, as well as from its modular structure.

Although the backbone of the proposed ontology is based on concepts pertinent

to urban networks, its term hierarchy is not solely limited to them. Drawing on

the fact that urban networks are embedded in an urban system, the ontology
incorporates broad concepts (e.g. in the form of super-classes) that aim to provide
context. Examples of these broad concepts are terms such as Agent, Event, Item,
Method, Process, Place, City, Information object, Physical object, Technology enabler,
Temporal entity, among others. These notions serve as the foundations, upon which
the relationships between the concepts about urban networks are built. In other
words, they assist in shaping the structure of the ontology hierarchy, described in the
implementation section. The majority of these broad concepts are already described in
external upper-level ontologies and are, therefore, reused in the proposed knowledge
model. The ontology also takes into account the development of new types of (physical
and digital) networks, such as sensor networks, geo-enabled social media, and LBSNs
that are the major sources of social urban data, as discussed in Chapter 2. Thereby, it
incorporates relevant concepts to model them semantically, either by reusing terms
from external ontologies or by introducing new ones.

Reuse of ontology modules

The reuse of modules that are already defined in implemented ontologies is key to

the development of the proposed knowledge model. These ontologies and structured
vocabularies are retrieved from Linked Open Vocabularies® and relevant ontology
catalogs, such as the one described in (Poveda-Villalén et al., 2015). The selected
strategy is to reuse specific ontology modules, instead of directly importing entire
ontologies to the proposed knowledge model (with the exception of the Time ontology).
The reused terms and statements are extended and enriched with additional
attributes.
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http://lov.okfn.org/dataset/lov/. Accessed March 14, 2016.
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In particular, the OSMoSys ontology of urban networks reuses broad concepts, such
as Action, Method, CollectiveAgent, and InformationObject, among others, from the
DUL ontology“° (Dolce + DnS Ultralite upper level ontology). To capture knowledge
about sensor networks, modules from the SSN (Semantic Sensor Network) ontology
are reused (Compton et al., 2012). Contributed concepts include the ssn:Sensor,
ssn:SensingDevice, ssn:Observation, ssn:Process, ssn:Stimulus, ssn:SensorInput, and
ssn:SensorOutput, which are appropriate for the representation of objects and features
that are fundamental to sensor networks. However, broader concepts for describing
the latter are introduced by the proposed ontology, as there is a lack of relevant terms
in existing models. Concepts pertinent to transportation networks reuse ontology
modules included in OTN*! (Ontology of Transportation Networks). Conversely, the
CityGML*? ontology contributes concepts about the geometry and topology of spatial
urban networks (e.g. citygml:CityDistrict, citygml:Building etc.). In the analysis of
urban dynamics, besides understanding the spatial distribution of urban phenomena,
itis equally important to understand how they evolve over time. Therefore, concepts
pertinent to time intervals and temporal scales are reused from the Time ontology*
(e.g. time:TemporalEntity, time:Interval, time:Instant etc.).

In addition to the aforementioned ontology modules, OSMoSys makes use of related
terms from external structured vocabularies. More specifically, dc and dct (collections
of metadata terms maintained by the Dublin Core Metadata Initiative) provide
concepts such as dct:Event and dc:PhysicalObject. The foaf vocabulary is used for
describing concepts pertinent to social networks, such as foaf:Agent, foaf:Group,
foaf:Organization, foaf:Person, among others. Terms such as Place and Administrative
Area are derived from the schema vocabulary. A selection of geographical features is
derived from the gm/vocabulary, an XML-based grammar and encoding standard of
OGC, and dbpedia-ow!. Additionally, a small number of data types and annotation
properties are respectively retrieved from the skos and vann controlled vocabularies.
Lastly, the proposed ontology complies with the following data modeling formalities:
owl; owl2xml; rdf; rdfs; and xsd (Table 11).

40
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http://www.loa-cnr.it/ontologies/DUL.owl. Accessed March 14, 2016.
http://www.pms.ifi.Imu.de/rewerse-wgal/otn/OTN.owl. Accessed March 14, 2016.
http://www.opengis.net/citygml|/2.0/. Accessed March 14, 2016.

http://www.w3.0rg/2006/time. Accessed March 14, 2016.
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TABLE 11 OSMoSys - Reuse of ontologies, structured vocabularies, and terms from standards.

Ontology | Vocabulary Prefix URI (Namespace) / Import
Source
ONTOLOGIES DUL (Dolce + DnS DUL http://www.loa-cnr.it/  partial
Ultralite top-level ontologies/DUL.owl#
ontology)
CityGML citygml http://www.opengis. partial
net/citygml/2.0/
Time ontology owl-time http://www. direct
w3.0rg/2006/time#
STRUCTURED 5
VOCABULARIES :
Dublin Core dc http://purl.org/dc/ partial
elements/1.1/
Friend Of A Friend foaf http://xmlns.com/ partial
foaf/0.1
Web Ontology Lan- owl http://www. direct
guage vocabulary w3.0rg/2002/07 /owl#
Resource Description http://www. direct
Framework w3.0rg/1999/02/22-
; rdf-syntax-ns#
Schema vocabulary http://schema.org/# | partial
VANN vocabulary vann http://purl.org/vocab/ : partial
vann/
Extensible Markup xsd http://www. direct
Language schema w3.0rg/2001/XM-
LSchema#
>>>
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TABLE 11 OSMoSys - Reuse of ontologies, structured vocabularies, and terms from standards.

Ontology | Vocabulary | Prefix URI (Namespace) / Import
Source

STANDARDS

ESPON ESPON (2007) partlal

British Publicly Avail- British Standards Insti- : partial
able Specifications tution (20144, b)
(PAS)
EIP on Smart Cities & EIP (2014) partial
Communities

Smart Cities Readiness Smart Cities Council partial
Guide (2014)

Ontology implementation

Following the integration of reused terms and modules, new conceptual structures (i.e.
concepts and axioms) are introduced, to address the scope and requirements of the
proposed ontology. Overall, the entire OSMoSys ontology conceptualization comprises
226 entities, classified into 121 classes, 82 object, data, and annotation properties, 23
individuals and datatypes, implemented with 736 axioms. The ontology is developed
using the Protégé ontology editor and the OWL2-EL coding formalism (Table 12). The
chosen resource naming strategy is that of hash URIs (see also Sect. 3.3.2.2), inasmuch
as the ontology contains a quite small and rather stable set of resources. The URI
domain used is: http://osmosys.hyperbody.nl, while the base URI for the ontology is:
http://osmosys.hyperbody.nl/files/Ontology**. In accordance to the hash URI resource
naming strategy, the generic URI paths for class names and properties respectively
follow the pattern:http://osmosys.hyperbody.nl/files/Ontology#<ClassName> and
http.//osmosys.hyperbody.nl/files/Ontology#<propertyName>.

a4
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The OSMoSys ontology is available at this link, in both OWL and RDF formats.
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TABLE 12 OSMoSys - Reuse of ontologies, structured vocabularies, and terms from standards.

Metrics, types of correspon- Counts / Annotations Examples
dence & annotations

ONTOLOGY METRICS Total number of ontology Classes, properties etc.
i entities

isPointOfInterest, isLocatedIn

language, prefix, creator etc.

Datatypes lat, long

Subsumption correspondenc- | 318 Municipality is a subClassOf
es (subClassOf axioms) City

Assertion correspondences 358 PointOfInterest isA Place
(isA axioms)

Disjointness correspondences : 4 Instant is disjointWith proper
(disjointWith axioms) interval
Range axioms 2 The range of isParticipantIn

property is Event

ANNOTATIONS
URIL http://osmosys.hyperbody.nl/files/Ontology#

Coding formalism OWL2-EL

The key component in a knowledge model of urban networks is the systems in which
the networks are embedded. These systems are in fact the cities comprising the
various types of networks, represented in the ontology by the dbpedia-ow!:City* class.

45 Throughout the thesis, the various ontology components are preceded by a prefix denoting the ontology name
or structured vocabulary, followed by the name of the component. Class names are capitalized and follow the
CamelCase naming convention, while (object, data, annotation) properties start with a lowercase letter. There-
fore, ontology components are identified as follows: [ontology prefix]:<ClassName> and [ontology prefix]:<prop-
ertyName>.
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Not having found appropriate modules in existing ontologies to describe urban
networks, a new osmosys:UrbanNetwork class is introduced. A subsumption
correspondence is subsequently established, by means of an rdfs:subClassOf
property, between the osmosys:UrbanNetwork and the dbpedia-ow!:City (axiom:
osmosys:UrbanNetwork is rdfs:subClassOf a dbpedia-ow!:City). The generated axiom
explicitly defines that cities are at their essence systems of networks, which are
embedded in the physical structure of the city through various types of infrastructural
components.

To better refine this statement, additional modules are introduced to the knowledge
model. The - social and spatial - structure of urban systems generally comprises
several types of elements with different attributes and behaviors that enable them

to be related in some way to one another through networks. As these elements may
refer to concepts as diverse as infrastructural components, organizations, groups

of people, orindividuals, the generic class osmosys:Item is introduced. The latter is
thus a sub-class of dbpedia-ow!:City and it encompasses all types of urban elements,
by establishing subsumption correspondences (i.e. rdfs:subClassOf relationships)

with them. In particular, the osmosys:Item class contains the sub-classes foaf:Agent,
DULInformationObject, dct:PhysicalObject, and osmosys:Service. These classes address
the variety of interrelated components in urban systems and, thereby, establish various
forms of relationships with the osmosys:UrbanNetwork class.

To capture the variety of actors in social networks, the class foaf:Agent further
incorporates modules about individuals, groups of people, and organizations

(foaf :Person, DUL:CollectiveAgent, DUL:Community, foaf:Group, foaf:Organization)

and introduces several object properties (i.e. relationships) between them. In turn,

the dct:PhysicalObject class conceptualizes the various infrastructural components of
cities and also encompasses modules to semantically represent sensor networks (e.g.
osmosys:SensorNetwork, ssn:Sensor, ssn:SensingDevice, osmosys:SensorSystem etc.).
The latter mainly stem from the SSN Ontology but are enriched with additional axioms.
Yet, as the reused modules that are derived from the SSN Ontology solely refer to types
of sensing devices, the knowledge model further introduces the osmosys:HumanSensor
class, to represent the contemporary notion that people can also operate as “sensors”
(e.g. by generating content on social media, by providing VGI, by being the main actors
of crowdsourcing etc.). To prevent semantic discordance, it establishes an equivalence
correspondence (owl:equivalentClass) with the foaf:Person class. Conversely, the
DULInformationObject class is used for modeling the various immaterial objects (e.g.
ssn:Sensorlnput, osmosys:SensorOutput, osmosys:SocialMediaFeed etc.) that comprise
information flows and networks. The osmosys:Service, which completes the hierarchy of
sub-classes that make up the generic osmosys:Item class, semantically represents the
various functions of particular elements in an urban system.
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The osmosys:UrbanNetwork class that was mentioned above, further specifies

the different kinds of networks between the components that are semantically
represented by the osmosys:Item class. It, therefore, incorporates classes about

the various networks of streets and buildings, the transport, social, economic,
telecommunications, energy, waste, and water networks, among other that are
found in cities. Through the subsumption correspondence, the instances of the
osmosys:UrbanNetwork class and all its sub-classes directly inherit the entire set of
properties, attached to dbpedia-ow!:City. In turn, a city - and hence all its sub-modules
- is engulfed by the overarching concept of schema:Place. Further relationships are
established with modules representing events in time (dct:Event), activity types
(DULAction), POls (osmosys:PointOfInterest), processes (ssn:Process), among others.

Besides the spatial attributes of networks, time is an intrinsic parameterin
understanding interactions between urban elements that take place on networks.

In capturing such temporal dynamics, the knowledge model incorporates several
components about time-related entities. To this end, it imports the entire set of
modules included in the Time Ontology. Examples of these components are, among
others, the time:Instant, time:Interval, time:DateTimelnterval, under the overarching
time:TemporalEntity class. The aforementioned classes are capable of capturing any
type of temporal unit.

The above concepts allow relationships to be established between attributes of
different dimensions (i.e. spatial, social, temporal) contained in the various source

data that would be mapped to the ontology. For example, a pair of social contacts (e.g.
derived from a social media platform or inferred from mobile phone data), with each
individual being an instance of the foaf:Agent class, could be linked with a specific

POI location (i.e. instance of the osmosys:PointOfInterest class) in a given city (i.e.
instance of the dbpedia-ow!:City class), at a given pointin time (i.e. instance of the
time:DateTimelnterval class). The semantic network of the OSMoSys ontology hierarchy
is (partially) shown in Figure 15.
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43.4.5

§ 4.4

§ 441

Evaluation

From the various criteria and types of ontology evaluation (see also Sect. 3.3.2.3D),
the implemented knowledge model is evaluated for logical consistency, as well as for
conciseness. Given that the proposed ontology is in fact an upper-level ontology that
can be further extended by third parties, it is not evaluated in terms of completeness.
The chosen method for checking potential inconsistencies is carried out through
several tests, using different types of reasoners, namely FaCT++, HermiT, and Pellet.
The ontology proved to be fully consistent, in terms of the description logic of its
axioms. In evaluating conciseness, the open-source OOPS! pitfall scanner

is used (see also Sect. 3.3.2.3). Multiple tests were carried out throughout the ontology
development procedure, in order to minimize issues of critical importance. Detected
missing annotations, mainly in the reused modules, are completed with relevant
descriptions and comments. There are yet some cases, in which missing domains
and/or ranges in properties are detected. However, this was a deliberate action, since
the comprehensive definition of exact domains and ranges of properties can lead to
undesired axiomatic classifications.

Visually Exploring Ontologies and Multidimensional
Linked Urban Data: A Benchmark Test

In examining the capacities of the OSMoSys framework, as regards the representation
and visual exploration of ontologies and linked data, the developed tools are tested
against reference data and knowledge models. In particular, the previously described
OSMoSys ontology, as well as the ROUTE ontology, presented in Chapter 3, are used
as benchmarks of both the interactive graph-based visualization and the WOB. In
addition, an instance of the integrated ROUTE RDF dataset, focusing on the bus
network of Athens is used as a benchmark of the developed interactive graph. With
regard to the two aforementioned ontologies, emphasis is put on the identification
of important classes in the graph (usually super-classes in the ontology hierarchy
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or classes with multiple connections, which in turn represent important real-world
objects in the network) and the visual clarity of relationships established with other
ontology modules. Conversely, in the case of the RDF dataset the focus is on the
performance of the graph visualization, especially in terms of handling large-scale data,
represented by thousands of nodes and edges.

Using the interactive graph tool to visually represent both OSMoSys and ROUTE
ontologies, an immediately distinguishable element is the the node corresponding

to the owl:Thing class. According to the OWL specification, owl:Thing is the default
super-class containing all classes of an ontology (Bechhofer et al., 2004). Therefore, it
has by definition the largest amount of connections and is, subsequently, illustrated

as the largest node in the graph. In the case of ROUTE, owl:Thing is centrally placed
(Figure 16), whereas in the OSMoSys graph it is located in the outskirts of the network
visualization (Figure 9). This has to do with the size of each network, whichin turn
affects the layout of the force-directed graph and the placement of nodes in it. ROUTE,
containing a smaller amount of classes (nodes) results in a radial layout, whereas
OSMoSys has a more complex structure that is described later. Although owl:Thing does
not have a functional role in the network, it serves as a starting point for the exploration
of the represented concepts and their relationships.

In the complete overview, primary classes (i.e. the ones that are higher in the ontology
hierarchy and contain a larger number of connections) are easily distinguishable
through their node sizes. The larger the size of the node, the larger the number of
connections it has with other components. These in turn refer to important real-world
objects of the domain being modeled. In the case of ROUTE important entities of the
transport network (e.g. route, route type, duration, transfer rule, stop etc.) surround
the owl:Thing node (Figure 17), whereas in the case of OSMoSys the primary classes are
located at the periphery of the graph, yet at a distance from ow!:Thing. Entities with less
established connections - hence represented by smaller nodes - are clustered mainly
in the center of the graph, instead of being placed at the outskirts of it (as is the case
with ROUTE), to keep its size more compact. The labels of the components representing
the aforementioned entities (primary classes) are the only ones that are visible in the
complete overview. This increases the readability of the complex graphs and it prevents
them from becoming cluttered with entity labels. In revealing the labels of smaller
nodes, a user may take advantage of the semantic zooming, hover, and pan functions
(see Sect. 4.3.2). Property names (types of relationship) are also entirely missing

from graph, again for readability reasons. Instead, the complete set of relationships is
included in the WOB.

At present, edge thickness remains constant throughout the graph. This is because
edges in the OSMoSys framework are used as indicators of interaction between two
components, rather than as measures of the intensity of this interaction. In the case
of ontologies, interactions between classes (nodes) also indicate correlations between
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the members that belong to each one of the interconnected classes. In exploring
the relationships between elements, the search and group functions play a crucial
role, especially in cases of complex networks. Instead of looking for a particular
classin the graph, one can type in the relevant term in the provided search box. For
instance, a user looking for the class representing urban networks, can type in either
“urban” or “network”, and a list of relevant components appears right below. By
choosing the term of interest - here, “UrbanNetwork” - the graph depicts an isolated
view, containing only the components that have some kind of interaction with the
osmosys:UrbanNetwork class. Accordingly, clicking on any of the connected nodes
resultsin a new graph, comprising the objects that are directly connected with the
chosen node (Figure 12). This can assist domain experts and ontology engineers to
identify missing concepts from the knowledge model.

The platform currently assigns a single color to all nodes and edges of a visualized
knowledge model. Some of the existing ontology visualizations distinguish sub-classes
from super-classes, as well as imported concepts from newly introduced ones, by
assigning different colors to nodes (Lohmann et al., 2016). Although this could be
helpful for experienced ontology engineers, in terms of understanding the structure
and role of ontology modules, it might seem quite redundant to users with little or

no experience in ontology modeling. The latter, being the main target group of the
OSMoSys framework, might find color and type variations confusing. Therefore, the
only variation is in terms of node size, as explained in the previous paragraphs.

Users may switch between the interactive graph and the WOB, by using the information
pane on the right side of the display, or the corresponding option in the WOB (Figure
14). The WOB displays the entire set of properties, annotations, individuals, and data
types included in an ontology. Although the WOB does not incorporate any search
function, the various components of an ontology are listed in alphabetical order, which
could also be helpful when looking for a particular entity (e.g. class, object property,
annotation etc.). By clicking on any term on the left, its full description appearsin

the main pane of the display. This in turn contains the URI of the selected entity and

a hyperlink to it, the accompanying annotations, the list of its super-classes, as well

as an overview of its usage patterns in the knowledge model. The aforementioned
attributes are clustered into groups to facilitate readability. By selecting any of the
entities included in these groups, the WOB displays the definitions, annotations, and
relationships corresponding to this entity. Moreover, all types of correspondences

(e.g. subsumption, equivalence, mereology, cardinality constraints, disjointness

etc.) pertaining to an ontology component, are displayed in the WOB and are further
distinguished by color coding.
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FIGURE 16 Visualization of the ROUTE ontology using the web-based interface of OSMoSys (Full network).

FIGURE 17 Zoomed view of the ROUTE ontology graph, highlighting the gtfs:Stop node (i.e. Class).
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Visually Exploring Multidimensional Linked Urban Data

Besides the two ontologies, the interactive graph is further tested for its ability to
represent large-scale linked datasets. To this end, an instance of the wider ROUTE
RDF dataset is used, concerning specifically the bus network of the city of Athens. The
RDF triples are retrieved from the dedicated SPARQL endpoint of the ROUTE dataset,
described in the previous Chapter (Sect. 3.3.4). The visualization of the RDF triples
results in a directed graph, comprising 37,249 nodes (i.e. individuals referring to the
start and endpoints of all bus lines, the entire set of intermediate stops, and their geo-
coordinates), connected together with 47,900 edges (i.e. relationships between the
nodes) (Figure 18). The force-directed graph has a radial layout, with less connected
objects being placed at the periphery of the graph. The majority of the network
components are instances of the gtfs:Stop class (part of the ROUTE ontology), which
subsequently constitutes the largest node in the network and is centrally placed in the
graph configuration. Due to the large size of the network, navigating the graph directly
is cumbersome. Although pan, zoom, and hover functions perform well, without
processing delay, the muddled visualization in the general overview makes it difficult
toidentify nodes of interest. In cases like this, entity filtering by means of search and
group functions could prove to be beneficial.

Toillustrate this, an example of entity exploration is carried out. Assuming that a user
isinterested in discovering the available bus stops around the area of Syntagma square,
which is the largest square in Athens city center, the first step is to identify the nodes
in the graph that correspond to relevant entities. To this end, the fastest method is to
use the search field. By typing in a generic term, such as “Syntagma” (or “Z0vtaypa”
in Greek, since the source data are provided in the Greek language), the system
returns a number of related nodes. These are namely “Syntagma square”, which refers
solely to the square and its adjacent streets; “Syntagma”, which also covers the area
surrounding the square; “On Syntagma Square”, which only refers to bus stops that
are located on the square; and “Syntagma station”, which denotes the closest metro
station to the square.

Since the useris interested not only in the square itself, but also in the area
surrounding it, the option that best fits the criteria is that of “Syntagma”. By choosing
this particular node, the graph display shows only the nodes that have a direct
connection with the chosen entity (Figure 19). These in turn correspond to all the
available bus stops in and around the square. By hovering over each node, the name
of the bus stop along with its ID number are highlighted. The selection of any of these
bus stops gives back additional information, by displaying the entities that it relates
to. Forinstance, by choosing the node labelled “On Vassilissis Sofias Avenue (Emi
NEQ®. BAZINIZZHE SO®IAZ)”, which refers to the bus stop at the intersection of the
aforementioned avenue with the square, a set of additional nodes is revealed. These
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denote bus lines traversing, yet not stopping at this particular point, nearby bus stops
serviced by the previous bus lines, latitude and longitude coordinates of the selected
bus stop, as well as the “Syntagma” node, which is the source entity. In a similar
manner, the selection of any of the related nodes would reveal further connections.
Moreover, the information pane on the right side of the interface contains links to the
URI of each entity.

In cases where links have been established with external datasets, such as the DBPedia
linked data, the sidebar further incorporates hyperlinks to those resources. In this way,
the user can take advantage of the additional information, described in the external
dataset, about the entity at hand. One example could refer to the nearby POls, which
areincluded in the DBPedia dataset. This would in turn enable users to understand the
interconnection between components of the bus network and the network of POIs.

_ROUTE

Public Tansport Network of
Athens - RDF Graph of Bus Stops.

This ARDF Geaph represents Te Starl and
End pronas. 5 well &8 0 VANOUS Bus SR8
based o dats provided by OASA. e
Putibe Transpon Organization of Athens.
The ROUTE Oniology wits used lor
gensrating e ROF Yicles

{ Mere about this visuskiation
Legend:

FIGURE 18 Graph visualization of an instance of the ROUTE RDF dataset. The large amount of triples results in a muddled
visualization in the full network view.
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FIGURE 19 Using the search field to choose a specific node on the RDF graph, returns an isolated view containing only the nodes
that are directly linked to the chosen one.

The key challenge that is addressed by this Chapter refers to the difficulties in making
sense of knowledge models and employing linked urban data in urban analytics,
planning, and decision-making. As pointed out in previous Chapters, the increasing
necessity to understand different aspects of urban systems in conjunction with one
another, encourages the combination of data from heterogeneous sources. This in
turn requires the establishment of approaches to data fusion. One such approach

can be based on the employment of ontologies, as discusses in the previous Chapter.
However, the majority of city stakeholders are not familiar with the formalisms that
the data integration methods pertain to. This could have a strong influence on the
extent to which these datasets can actually be consumed and exploited. It could also
hamper the understanding the relations between the different facets of cities and their
dynamics. Providing visual representations of ontologies and linked data can be useful
in mitigating this problem. Yet again, as ontologies and integrated datasets grow in size
and complexity, the resulting visualizations can easily become muddled.

In addressing these challenges, a set of tools is designed and implemented to
support the interactive visual exploration of ontologies and multidimensional linked
data for cities. In addition to the toolset, an upper-level ontology of urban networks

148  Revisiting Urban Dynamics through Social Urban Data



149

is developed, which can be used as a reference framework in domain-specific
ontologies that model resources pertinent to a particular facet of urban systems. The
contributions are thus threefold:

A set of web-based tools for the visual representation and exploration of ontologies and
multidimensional liked urban data;

A set of navigation and filtering functions to increase the readability and exploration
potential of complex graph visualizations of ontologies and linked data;

A conceptualization that models the networks in cities, the elements that comprise
them, and (an indication of) their relationships, which can be used as a shared
vocabulary among city stakeholders.

The tools and the knowledge model use solely open software and standards, are
provided under open licenses, and can be accessed through commonly-used web
browsers. One of the aims of the aforementioned tools is to assist in bridging, to some
extent, the gap between linked data consumers and ontology engineers. Moreover,
the tools can be used by domain experts as a basis to evaluate ontologies under
development (see also Sect. 3.3.2.3).

Alimitation of the developed graph-based visualizations of both ontologies and,
especially, linked data is that the illustrated resources are not spatially referenced.
Although some of the data elements represented might be, in reality, referenced

by a spatial location, their placement on the graph is independent of this location.
Hence, the generated graph visualizations are essentially a-spatial. This means that
the visual exploration is focused on understanding the topological, rather than the
spatial, relations between the elements and, in the case of ontologies, the semantic
relationships between the modeled concepts. Moreover, the tools do not provide

for any sort of measurement or network analysis statistics (e.g. degree distribution,
centrality, betweenness etc.), as this is not in their scope. The tools are targeted to city
stakeholders (e.g. urban planners, policy makers etc.), as a means to facilitate their
understanding of interrelations between heterogeneous urban data. Also, they can be
valuable in the process of ontology development, as a shared platform between domain
experts and ontology engineers.

In reference to the developed ontology of urban networks, the implementation
presented in this Chapter refers to the first version. Presumably, additional axioms,
annotations, properties, and classes will be necessary in future versions, to further
enhance the coverage of the domain and knowledge it models. To this end, further
contributions and evaluations by relevant stakeholders are deemed necessary in the
future. However, given that itis an upper-level ontology, it deliberately contains generic
concepts, which in turn can encompass modules that represent more specific elements
of urban systems (e.g. to serve as super-classes of concepts included in domain specific
ontologies, so that the latter also inherit the properties of the former). Taking into
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consideration the lack of analogous ontologies to date, it aims to set the foundation
for a sharable and extendable knowledge model that could facilitate the fusion of
heterogeneous urban data.

Another relevant issue, which has also been broached in the previous Chapter, is the
current lack of comprehensive linked data for cities. This would allow the performance
of additional tests, to examine the capacities of the developed tools, in making sense
of the relations between resources. With regard to public transport networks, the
generated linked dataset, described in Chapter 3, is one such contribution, relative to
a specific urban system (i.e. the Athens metropolitan area). If available, the generation
of links with integrated data from social media, for instance, would assist in exploring
relations between the social activities of individuals and the transportation system of
the city. Despite these limitations, the tools presented in this Chapter provide a way to
mitigate the problems related to the formalisms of ontologies and linked data, which
generally prevent non-expert users from engaging in them. They could potentially
facilitate the understanding of ontologies, the consumption and employment of linked
urban data in urban analytics, and hopefully instigate the generation of new linked
datasets.
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Deriving Human Activity Attributes
from Social Urban Data

The analysis of urban dynamics, especially in regards to human activity and movement,

requires that spatial, social, and temporal properties of cities and people are taken
into consideration. Urban systems have been generally analyzed, to date, through
two distinct approaches. The first one emphasizes the physical structure of cities,

in particular the geometrical and morphological attributes of the urban fabric.

This approach borrows concepts from location theory and urban morphology. The
primary proxies that are used to understand spatial phenomena pertain to area size,
population density, physical proximity, employment rates, and land-use locations,

to name but a few. In this perspective, social activity is assumed to be influenced
directly by the changes occurring in the built environment. The second approach
focuses predominantly on the social networks of cities, studying the relationships
and interactions between individuals or groups of people. This approach imports best
practices and techniques from disciplines such as sociology and urban geography.
Unlike the first approach, the proxies used to understand social phenomena primarily
pertain to social connectivity, betweenness, network centrality, embeddedness,
topological (dis)similarity, and other relational measurements (M. Burger & Meijers,

2011, Sevtsuk & Mekonnen, 2012; Wang et al., 2015). However, the networks of social

contacts and interactions are often considered independently of the physical structure
of cities.

Although the two aforementioned approaches are mutually related, spatial and social
urban phenomena have hitherto been analyzed independently from one another
(Andris, 2011). As a consequence, cities have been understood either as clusters

of locations or as - largely a-spatial - networks of (social) interactions, yet rarely

as combinations of the two (Michael Batty, 2013b; Hristova, Williams, Musolesi,
Panzarasa, & Mascolo, 2016). To a great extent, the limitations of traditional urban
data (e.g. spatially aggregate attributes, infrequent updates etc.) contributed to

this separation.

Nowadays, however, the availability and distinguishing characteristics of social urban
data, as defined in Chapter 2, together with the possibilities given by linked data

Deriving Human Activity Attributes from Social Urban Data



§ 5.2

§ 521

152

(described in Chapter 3 and partially in Chapter 4), open new avenues for richer and
more detailed descriptions of urban systems than it has been possible hitherto. This
chapter presents a set of methods and techniques to derive attributes from social
urban data, pertinent to people, places, and the interactions between them, at the
disaggregate level (e.g. activity, movement, demographic, and sentiment attributes

of individuals; functions of single POIs etc.). The focus is primarily on data generated
from geo-enabled social media and LBSNs. The aim is to support the analysis of urban
dynamics with detailed descriptions of people and their activity at different places over
time. Further, the chapter presents how the extracted attributes can enrich existing
metrics of the built environment. The methods and techniques to extract disaggregate
attributes from social urban data set the foundation for the design of a system that
performs analyses on these attributes and provides insight into the dynamics of human
activity in cities (presented in Chapter 6).

The remainder of the chapteris structured as follows. First, in Sect. 5.2, different
approaches to measuring, modeling, and characterizing urban space are discussed,
by reviewing existing literature. The focus is on the attributes - derived from both
traditional and emerging sources of data - that have been used hitherto to measure
and model urban systems and their dynamics. Next, Sect. 5.3 describes a set of
attributes pertinent to human activity, in terms of both people and places, which can
be derived from geo-enabled social media and LBSNs, and presents methods and
techniques for extracting these attributes. It also presents how the derived attributes
help measure the functional density and diversity of urban areas, as well as the
geographical extents of activity spaces over different periods of time. Finally, Sect. 5.4
summarizes the conclusions.

Traditionally, the predominant approach to studying spatial phenomena and the
activities of people in cities is pivoted around the geometry and morphological
configuration of the physical urban fabric. The main assumption hereof is that the
structural characteristics of the built environment have a direct influence on the social
and economic aspects of cities and vice versa. A plethora of existing literature adopts
methods and tools from the field of urban morphology to analyze urban space, with
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a focus on the study of geometrical patterns of the built environment. These patterns
refer to arrays of elements such as buildings, streets, open spaces (e.g. lots, public
squares, parks etc.), and urban blocks.

The prevailing methods used by the majority of empirical studies to measure the
aforementioned patterns are namely: (a) the comparison of different urban systems

to evaluate the diversity of distinct physical city characteristics, and (b) the analysis of
urban growth and development over different periods of time (Cervero & Kockelman,
1997, Crane, 2000; Forrester, 1969; Song & Knaap, 2004). Both methods use similar
proxies, which can be classified into the following four categories: (1) geometrical
attributes, such as the area and distance (e.g. Euclidean, cost distance etc.) to measure
the density, proximity, and continuity of the urban fabric; (2) land use composition and
distribution to measure the concentration, clustering, segregation, and centrality of
different regions in a city; (3) topological attributes of spatial networks (e.g. streets) to
evaluate accessibility; and (4) socio-economic attributes, such as population size and
employment rates, to infer (economic) activities.

The understanding of aspects of urban dynamics in this approach is rather
rudimentary. In fact, it is limited to the investigation of urban growth patterns and

how these evolve over long periods of time. The proxies mentioned in the previous
paragraph are used to inform urban models, which are usually built upon the
foundation of classic spatial theories, such as the location theory (Weber, 1909) and
the central place theory (Christaller, 1933; Losch, 1944). The former determines

the spatial distribution of land uses and other economic activities, driven by the
optimization of costs and benefits. Conversely, the central place theory focuses on the
relationship between urban (cities) and rural (towns) settlements, with regard to their
mutual trade interactions, but it is mostly concerned with their spatial distribution
and size, rather than the actual dynamic flows between them (Berry & Garrison, 1958;
Berry & Parr, 1988; Berry & Pred, 1965; M. Burger & Meijers, 2011; Parr, 1987). Both
of these theories are based on the assumption that urban space is rather invariable and
human behaviors are homogeneous (Fotheringham et al., 2000; Sayer, 1992).

Drawing on the above theories, a wide range of empirical studies has approached
properties of the urban environment, such as spatial density, proximity, diversity,
segregation, and centrality solely from the standpoint of physical urban structure
and its attributes. Jacobs (Jacobs, 1961) and Gehl (Gehl, 1996) have made important
qualitative observations about the effects of density and diversity on the social
prosperity of cities, yet without any empirical grounding on the basis of quantifiable
measurements and observations. In contrast, there exist a number of scholars who
employed various land-use data, housing price records, population demographics,
and employment rates as proxies to quantify urban density and its connection with
the gradation of land values (Alonso, 1964) and the amount of inhabitants (Clark,
1951). These measurements were pivoted around the geometrical (Euclidean or
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cost) distance from the central business district (CBD) of a city. As such, they largely
associated with von Thiinen's model (Thiinen, 1966) for the study of optimal
agricultural land uses, based on travel costs to the central marketplace (Michael Batty,
2013b). The density of urban space has also been used as a proxy to measure the
centrality of a place (inter alia, (Hall & Pain, 2006; Kloosterman & Musterd, 2001;
Riguelle, Thomas, & Verhetsel, 2007) or the existence of multiple sub-centers in a city
(a spatial phenomenon often referred to as “polycentricity”). These approaches were
primarily based on the identification of local employment maximums (McDonald,
1987; McDonald & Prather, 1994) and the clustering of merchandising activity in sub-
centers (Thurstain-Goodwin & Unwin, 2000).

Accessibility and connectivity have been traditionally studied through the analysis of
spatial networks, and specifically through the space syntax method (Hillier, 1996).
Based on the spatial configuration of public spaces, space syntax focuses on the street
network of cities, which is approximated by a two-dimensional network of linear
elements (axial sightlines). Connectivity and accessibility are respectively measured
in relation to the amount of connections of street segments to other adjacent streets,
and the number of direction changes from a particular street. Thereby, the space
syntax method does not use points as proxies to represent specific locations, but it is
rather based on a linear representation of the urban spatial structure. Socioeconomic
activities are therefore considered simply as the aftereffect of the way these elements
interconnect with one another.

Although space syntax can be useful in analyzing the effects of future urban
interventions on the wider city fabric, it is also characterized by several limitations that
may lead to significant misinterpretations, especially with regard to the social activities
in cities. Ratti (Ratti, 2004) has specifically focused his criticism on the lack of metrical
properties and building height information in space syntax, while Batty et al (Michael
Batty, Jiang, & Thurstain-Goodwin, 1998) have pointed out the absence of elements
pertinent to land uses, and the corresponding limitations in representing human
mobility and interactions between locations. In addition, space syntax is entirely
independent of any cultural or socio-economic factor that may influence significantly
the way people interact with the urban environment.

Modeling Spatial Flows and Interactions

The approaches described in the previous section, tend to portray the structure of cities
ina more or less static fashion. Dynamic relations among different locations are hardly
ever taken into consideration. Essential features, such as urban density and diversity,
are approached solely from the perspective of population size, physical proximity and
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the array of different land use types, but scarcely from the viewpoint of the volume and
type of activities. In measuring, simulating, and predicting the movement of people
and goods between different location, various spatial interaction theories have been
developed over the years (Michael Batty, 2009).

The early approaches to spatial flows adopted theories primarily from the domain of
physics. As a matter of fact, the first spatial interaction models for the measurement
and prediction of migration flows were created as analogies to gravity models

(Michael Batty, 2013b; Fotheringham et al., 2000). In these models, the movement of
people from an origin i to a destination j is described as a function of their respective
population size, divided by the distance d,-]- between the two cities and defined as:

J (5.1)

Where represents the amount of movements between the two locations i and j, P; and
P. represent their respective population size (used as a proxy for measuring their size),
and K is a scaling constant, which could be measured, for instance, in kilometers/
person, provided that the distance is measured in kilometers and the movement by
the amount of people traveling from the origin to the destination. In analogy to the
Newtonian gravitation, the movement model of the equation (5.1) implies that the
flow of movement between two locations increases when their respective populations
increase in size. Conversely, their mutual attraction will be weaker as the distance
between them becomes larger.

However, it was later acknowledged (Fotheringham et al., 2000; Fotheringham &
O'Kelly, 1989) that the assumptions of the above-described model were quite abstract
and generic and, therefore, were not appropriate for representing the complexities

of actual movement. For instance, human mobility, traffic flow, or the flow of goods
usually differ from one another, and this diversity is not addressed by the model in
(5.1). Therefore, in order to allow for these differences to be represented, the model
was extended to accommodate additional parameters for calibration:

M = K— (5.2)
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where ais an exponent related to the ability of an origin location to generate
movement, B s an attractiveness indicator determined by the types of activity at the
origin, and y s a factor for describing the friction of distance, usually determined by
the type of transport system connecting the two cities. The value of these indicators is
not fixed. Changes in the type of the activities in question or the way in which they are
performed, in addition to advancements in the transportation systems connecting the
two locations can essentially affect the value of the exponents and, subsequently, the
value of the overall flow. In general, historical data on flows (e.g. migration) are used
as proxies for estimating the aforementioned indicators. These types of data - sourced
primarily from travel surveys - are usually not up-to-date (travel surveys are updated
approximately every 5 - 10 years). Emerging social urban data could be useful, in

this regard.

Alater improvement to these models, resulted in the development of a series of spatial
interaction models that were built as analogies to the principle of maximum entropy.
These particular models are also known as the “family of spatial interaction models”,
and were developed by Wilson (Wilson, 1967, 1975). The “family” comprises four
types of models, namely (a) the unconstrained, (b) the production-constrained, (c)
the attraction-constrained, and (d) the production-attraction-constrained models
(Fotheringham et al., 2000; Wilson, 1970, 1975).

A recent alternative to both the gravity model and Wilson's spatial interaction models
is the Radiation Model for human flows and interactions, introduced by Simini et al
(Simini, Gonzalez, Maritan, & Barabasi, 2012) and described as follows:

M;; —J

=M. (5.3)
b (P Sy) (Pt B+ Sy)

where P;and P; represent again the populations at origin i and destination j
respectively, while S;; signifies the total population in the circle with radius d;; centered
ati, excluding the populations at both origin and destination. M; denotes the total
outgoing flux, originating from i. Unlike the models that have been described thus

far, which take into account only the population size of the origin and destination
locations, the radiation model also accommodates the population density of regions
surrounding the origin. In comparison with the gravity and entropy-based models,

the main advantage of the radiation model lies in its parameter-free nature, in the
sense that it excludes any exponents/indicators that are characteristic of the previous
models.
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Spatial interaction models have been widely applied to the analysis of the movement
dynamics between locations. In recent literature, Thiemann et al (Thiemann, Theis,
Grady, Brune, & Brockmann, 2010) explore a network of interregional human flows to
operationalize and assess whether existing political and administrative borders reflect the
contemporary mobility and connectivity patterns of people. Banknote transaction data
are used as proxies for the measurement of human mobility. Similarly, van Oort et al (van
Oort, Burger, & Raspe, 2010) employ a dataset about the interrelations of firms within the
most important conurbation in the Netherlands - known as the “Randstad” - and use it
as a proxy for evaluating whether this urban system functions as an integral (economic)
entity. (De Goei, Burger, Van Oort, & Kitson, 2010) and (M. Burger & Meijers, 2011),
employ commuting data and incorporate them into gravity models to study the spatial
interaction patterns of people across cities in the UK and the Netherlands respectively.

Integrating Social Networks into the Physical Structure of Cities

The approaches presented thus far focus on the interactions between physical
locations (e.g. between two cities or two places in a city). In contrast, research on the
interactions between individuals has followed a different path, usually ignoring the
spatial parameters of the built environment and focusing primarily on topological
attributes of the social networks (Freeman, 1979; Hanneman & Riddle, 2005; Jackson,
2010; Prell, 2012). As a consequence, social connectivity is usually studied outside of
the physical space. Research on multilayered networks (Boccaletti et al., 2014) is only
recently gaining in popularity and, drawing on the emerging possibilities of social urban
data, attempts are made to interconnect social relationships with geographic space
(Andris, 2016; Boccaletti et al., 2014; Hristova et al., 2016; Wang et al., 2015). The
integration of social connections into the physical urban space has potential to provide
richer descriptions of urban areas and their dynamics.

The mutual exploration of both social and spatial aspects of urban dynamics has
hitherto been hampered by the limited availability of multidimensional urban data at
finer spatial and temporal resolution. Nowadays, however, the increasing availability
of social urban data, has instigated a wealth of research that touches upon social and
spatial aspects of urban systems. Though, it should be noted that the “social” aspects
in related literature do not necessarily refer to social connections, but may instead
pertain to social activity (e.g. mobility patterns, check-ins to specific venues) that
derives from a - usually online - social network (e.g. social media platforms). In this
context, the following paragraphs classify related literature that uses social urban data
as proxies for understanding urban dynamics, according to the source they employ,

in particular: (1) mobile phone records (CDRs); (2) GPS traces; (3) human-generated
content from social media; and (4) combinations of the previous sources.
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Call detail records from mobile phones are increasingly gaining in significance, as
regards the study of human activity patterns in cities. Departing from the more
common study of aggregate flows of people, Calabrese et al (Calabrese, Smoreda, et
al., 2011) analyze a large-scale dataset of CDRs, derived from a single mobile phone
operatorin Portugal, in order to explore the person-to-person activity over space and
time. The analysis showed that about 93% of users calling each other, irrespective of
the distance between their homes, have also been physically co-located in the same
place at the same time, as inferred from the cell tower area within which the calls have
been made. Wangetal (Wang et al.,, 2015) enhance the approach of the previous
work by incorporating geometrical data about the physical urban fabric to create links
between the social networks of users and the spatial locations where their activity
occurs. In an attempt to alleviate the impact of the several limitations that characterize
CDRs, (Diao et al.,, 2015) combine mobile phone records with data from traditional
travel surveys, to infer the spatial and temporal distribution of everyday activities of
individuals. In contrast, (Grauwin etal., 2015) employ CDRs at an aggregate level, in
order to perform a comparative analysis on the dynamics of human activities across
three major cities - namely, New York, London, and Hong Kong - and juxtapose them
with land use data to explore potential correlations and influences. By superimposing
the aggregate activity dynamics in all three cities, the authors discover a large degree
of pattern similarity, which could be explained as the repercussion of the globalized
economy on the shaping of contemporary cities, while several diversities exist at the
individual level. Correspondingly, (Amini et al., 2014) conduct a comparative analysis
based on large-scale mobile phone records, yet at the national level and between a
developing and an industrialized country. A particularly interesting feature of this work
lies in testing the performance and suitability of several spatial interaction models,
described in Sect. 5.2.2, in the challenging context of developing nations.

Several studies on human mobility exploit the potential of GPS traces, as these become
increasingly available through sensing devices and sensor networks embedded in urban
infrastructure. Yuan et al (Yuan, Zheng, & Xie, 2012) use trajectory data from GPS-
enabled taxicabs, in combination with sets of POIs, to infer the real usage and function
of different areas within Beijing and their evolution over time. Gao et al (S. Gao, Wang,
Gao, & Liu, 2013) also employ taxi trajectory data to approximate the distribution

of traffic flows. In addition, these data are integrated into spatial network models,
focusing specifically on the betweenness centrality, in order to investigate its capacity
as an indicator for simulating and predicting traffic flow patterns. However, due to the
low degree of semantic expressiveness characterizing GPS and other sensor-generated
data (see Chapter 2), it is generally difficult to infer individual behaviors of people,
which have a strong influence on the configuration of mobility patterns.

Contrariwise, data generated by people through various geo-enabled social media have

a great capacity to create connections between the social ties among users and the
spatial location of their activities over time. Scellato et al (Scellato, Lambiotte, Noulas,
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& Mascolo, 2011) use datasets from three different social media platforms, namely
Brightkite, Foursquare, and Gowalla, as proxies for approximating several socio-spatial
attributes of (groups of) people and are, then, incorporated into urban gravity models.
This work is further extended in (Noulas, Scellato, Lambiotte, Pontil, & Mascolo, 2012),
which focuses on a comparative analysis of human mobility patterns among 34 cities
across four continents, by exploiting large-scale check-in data from Foursquare. Unlike
the several limitations of traditional urban data sources (see also Chapter 2), the global
scale of LBSNs allowed the authors to simultaneously investigate the diversities and
similarities of human flows and interactions across disparate urban environments.
(Cranshaw et al., 2012) also utilize Foursquare data to study the dynamics of activity
patterns in Pittsburg, Pennsylvania. These are subsequently incorporated into models
for clustering areas in the city, based on the activity types, taking into account both
spatial and social proximity between venues and users respectively. What is particularly
interesting in this work is the validation of the social media analysis results, by
comparing them with data from several interviews with residents. In a similar way,
Silva et al (Silva, Melo, Almeida, Salles, & Loureiro, 2013) explore urban dynamics
through a mutual comparison of large-scale datasets from two social media platforms,
namely Foursquare and Instagram, yet without performing a cross-validation against
survey data. Likewise, (Del Bimbo, Ferracani, Pezzatini, D'Amato, & Sereni, 2014)
employ geo-referenced data from Facebook and Foursquare to classify different
venues in the city, based on users' interest profiling. (Shelton et al., 2015) use Twitter
data from Louisville, Kentucky to investigate the intensity of segregation between two
neighborhoods in the city. A significant characteristic of this study is the coupling of the
aforementioned web data with local knowledge about cultural, historical, and political
factors that largely supplement the interpretation of the online datasets.

The studies described in the previous paragraph employ a single source of data.
There exist a few examples, in which multiple sources of social urban data are used.
(Sagl, Resch, Hawelka, & Beinat, 2012) combine CDRs with data from Flickr to
analyze aggregate spatiotemporal human mobility patterns. Earlier to this study,
(Vaccari, Calabrese, Liu, & Ratti, 2009) introduced an urban information system that
allows datasets from diverse sources to be collected, stored, and integrated. More
recently, (Stanislav Sobolevsky et al., 2015) investigated the operationalization of
city attractiveness factors for foreign visitors, by using heterogeneous data from bank
card transactions and social media platforms (Twitter and Flickr), to approximate
economical, social, and behavioral aspects of human activities.
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The studies discussed thus far provide an indication of the new possibilities given

by social urban data. Besides having an understanding of the distinguishing
characteristics of social urban data (see Chapter 2), itis also important to investigate
what attributes can be derived from these emerging sources, which have potential to
provide detailed descriptions of the spatiotemporal dynamics of human activity.

This section describes a set of attributes pertinent to human activity, in terms of both
people and places, which can be derived from social urban data, and presents methods
and techniques for extracting these attributes. The focus here is primarily on data from
geo-enabled social media and LBSNs. The derived attributes refer to characteristics

of both the people who perform a certain (social) activity (e.g. socio-demographic
characteristics, home location, individual trajectory, activity space, sentiments etc.)
and the places where activities occur (e.g. land use, type of activity). The attributes

are classified into four categories according to the nature of the feature they describe,
namely: (1) socio-demographic attributes, (2) functional attributes of places, (3)
individual spatial movement patterns, and (4) topical attributes (Table 13).

Further, the section presents how the derived attributes can be used to enrich existing
metrics of the urban built environment (e.g. functional density and diversity), which
could support the characterization of urban areas according to the activities performed
over time.

TABLE 13 Attributes of human activity and methods for deriving them from geo-enabled social media and LBSN data.

Category

Socio-demographic attributes

Attribute

- Home location
- Age range, gender, ethnicity

Method / Technique

- Recursive grid search / Geohashes
- Directly from profile information /
Using specialized software

Functional attributes of places

- Land use

- POI categories

Individual spatial movement patterns

- Individual trajectory

- Sequence of posts

- Activity space - Online visits (i.e. check-ins)
Topical attributes - Semantics - Natural language processing / Keyword
- Sentiments filtering

- Sentiment analysis
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Estimating Socio-demographic Attributes

Social urban data and, in particular, geo-enabled social media and LBSNs are tagged to
space and time and can provide estimates of a person’s socio-demographic attributes
(e.g. home location, age range, gender etc.).

The following paragraphs present methods and techniques to address the demographic
diversity of the individuals contributing content to geo-enabled social media and
LBSNs.

Home location approximation

Residential areas play a significant role in the analysis of human mobility in cities, as
the majority of movements are generated from each person’s home location and it is
this same place where most human movements end up. Therefore, having knowledge
of home locations at the disaggregate level is particularly important when it comes to
studying human dynamics and to understanding the mobility choices of people with
regard to commuting or leisure.

In approximating the home location of an individual from social media data, recursive
grid search could be used (Cheng, Caverlee, Lee, & Sui, 2011). By taking into account
the complete history of geo-referenced posts of an individual (i.e. social media user),
the home location can be approximated as the one from which this person appears

to post most frequently. Instead of considering the average location of the entire set
of geo-referenced posts as evidence of a person’s home location, the recursive grid
search method could reach more accurate approximations. To achieve this, a set of
consecutive steps need to be followed. First, the geo-referenced posts are clustered into
a grid, which comprises square cells of a certain (larger) size that can be freely defined.
Second, the cell that contains the largest amount of posts, along with the eight cells
that are adjacent to it, are divided into a smaller grid that comprises cells of a much
smaller size than the initial ones (about one tenth of the size of the original squares).
Next, the aforementioned procedure is repeated as many times as needed, until the
grid cells are about a thousand times smaller than the original ones. Eventually, the
centroid of the cell that contains the largest amount of posts can be used as a proxy for
the home location of an individual.

In enriching this method, geohashes could be used in place of custom grid cells
(Bolivar, 2014; Fox, Eichelberger, Hughes, & Lyon, 2013). Geohashes consist of a
latitude/longitude geocoding system and spatial data structure, which represents
coordinates in a grid-like fashion. Posts are clustered into geohashes of increasing
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length - the larger the length of a geohash, the larger the level of detail and the lesser
the amount of error - following the exact same procedure as described in the previous
paragraph (Figures 20 - 21).

An additional improvement with regard to accuracy, involves the consideration of the
posts that are generated between 6pm and 8am, assuming that these would originate
from the actual location of a person’s home. This approach has been followed by
(Calabrese et al., 2013) in order to approximate the home location of a mobile phone
user, derived from CDRs. By adapting it to the recursive grid method, the centroid of
the grid cell or geohash containing the largest amount of posts that were generated

in the aforementioned time interval can be used as a proxy for the home location of
anindividual. Validation of the extracted results can be done by cross-checking the
collected geo-referenced social media data with disaggregate census data, where
available.

Drawing on the approximation of the home location, it is possible to classify users of
social media into social categories and, in particular, residents, non-residents, and
foreign tourists. In particular, if the estimated place of residence of an individual

is located in the same city as a city in question, then it could be assumed that this
person represents a resident. Conversely, in the case where a user’s approximated
home location is placed outside of a city under consideration, but both are located
in the same country, it could be assumed that this person represents a non-resident
ora commuter. Finally, if a user's approximated home location is placed outside of a
city in focus, and is also located in a different country, then it could be assumed that
this person represents a foreign tourist (Psyllidis et al., 2015a). The identification of
different groups of people, instead of treating all social media users as uniform, could
provide new insights into the spatiotemporal dynamics of human activity in cities.
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FIGURE 20 Recursive grid search with geohashes. The geohash containing the largest amount of posts (here u0) and the eight cells
adjacent to it are further divided into smaller geohashes.
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Socio-demographic attributes of individuals

Among the most common socio-demographic attributes that can be derived from
social media are the age, the gender, and the ethnicity of an individual. The ways to
extract these attributes vary significantly from platform to platform, as each of them
uses a different model to describe the profile of a user. For instance, Sina Weibo asks
for an explicitindication of gender and age, whereas platforms such as Twitter and
Instagram allow users to optionally specify this type of information. Therefore, it is
difficult to derive demographic attributes by using a single technique that is applicable
to all types of social media.

With regard to the age attribute, in cases where it is not explicitly provided by the
users, the content of posts can be used as a proxy to derive an estimate of a person’s
age range, using natural language processing techniques (Rao, Yarowsky, Shreevats,

& Gupta, 2010). Yet, this method allows only for a very broad classification of age (e.g.
below or above the age of 30). In achieving more accurate estimations, the analysis of
profile pictures using facial recognition algorithms is increasingly gaining in popularity
(Bolivar, 2014). However, not all users provide a real or recent picture of themselves,
which subsequently decreases the estimation accuracy. Even in the cases where recent
and real profile pictures are provided, the facial recognition algorithms will return a
certain age range, rather than a precise age value.

Similarly, the gender of social media users can be inferred from the characteristics of
the profile picture. Burgeretal (). D. Burger, Henderson, Kim, & Zarrella, 2011) tested
a variety of attributes that are frequently included in a social media profile model (e.g.
full name, screen name, profile description etc.), and by additionally performing textual
analysis on sample posts, it is concluded that the most informative gender estimation
variable is the full name of a person. However, a significant limitation of this variable

is that only a limited number of social media platforms require the real full name

of a user.

An additional demographic characteristic that can be inferred from social media is

the ethnicity of an individual. According to (Pennacchiotti & Popescu, 2011) the most
reliable proxy for inferring a person’s ethnicity is the linguistic content of her/his posts,
whereas profile-based features (e.g. profile pictures) have limited potential in this
regard. Therefore, a combination of linguistic content analysis along with analysis on
the full name of a user can be employed, in order to potentially increase the accuracy
of the obtained results. This combination of techniques could also be useful for the
extraction of age and gender-related attributes.
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Inferring Functional Attributes of Places

An advantage of geo-enabled social media and LBSN data in comparison with other
sources of social urban data, such as mobile phones and sensors, is that geo-referenced
posts can be mapped to specific places (i.e. POIs), which are in turn connection with

a given function (e.g. museum, restaurant, theater etc.). Moreover, they are usually
enriched with semantics about the type of activity carried out in a given place, which
may deviate from its function. Topical attributes will be touched upon in Sect. 5.3.4.

The following paragraphs focus on the extraction of land use attributes from social
media data. These attributes are then used to enrich metrics of the functional density
and diversity of the built environment.

Land use approximation

Each spatially and temporally tagged post of an individual on a social media platform
reflects an instance of a certain activity, linked with a physical location. Some of these
locations appear to attract further attention from people, either because they are
interesting or because they are characterized by a useful function that allows several
types of social interactions to occur. These particular places are referred to as points of
interest (POIs) and constitute important attractors or generators of human flows. The
majority of the functions characterizing online POIs correspond to the actual land uses
of buildings or public spaces. Therefore, it is assumed that they can be used as reliable
proxies for estimating real-world land uses of the built environment at the disaggregate
level. The extent to which these POIs reflect the actual underlying physical locations
and functions is subject to several biases of social media that need to be considered in
the extraction and analysis process.

Each social media platform follows a different approach to POl description and
assignment to a post. Geo-enabled social media platforms such as Instagram, Twitter,
and Sina Weibo, provide a set of geo-coordinates (latitude and longitude) from
which POIs in the vicinity can be inferred. Conversely, LBSNs such as Foursquare,
enable the extraction of specific types of function, venue categories, exact place
names, links to websites, and the level of popularity. In addition to this, there exist

a variety of taxonomies, which are used to classify POIs according to their category.
Forinstance, the entire Foursquare taxonomy consists of more than 400 POI types,
which are classified into 10 general categories (e.g. arts and entertainment, college
and university, event, residence, professional places etc.). In contrast, Sina Weibo,

a popular Chinese social media platform, uses a hierarchy of more than 300 POI
types, which are grouped into 9 categories (e.g. travel and accommodation, office and
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organization, education, shopping etc.). Table 14 presents an alignment of the general
POI categories between Foursquare and Sina Weibo, as listed in their respective APIs.

TABLE 14 Alignment of POI categories between Foursquare and Sina Weibo (based on API documentation).

POI category (Foursquare) POI category (Sina Weibo) Indicative function
Arts & Entertainment Life & Entertainment Movie theater, Museum, Theater etc.
College & University Education College academic building, University
faculty etc.
Event Other places Conference, Convention, Festival etc.
Food Food & Beverage Restaurant, Coffee shop, Diner etc.
Nightlife spot Life & Entertainment Bar, Pub, Nightclub etc.
Outdoors & Recreation Park & Plaza Sports field, Fitness center, Sports club
etc.
Professional & Other places Enterprise Office building, Government building,
Office building & Organization Non-profit organization etc.
Residence - Private home, Residential building
Shop & Service Shopping Various types of shops, Bank, Super
Market etc.
Travel & Transport Travel & Accommodation Airport, Bus station, Hotel etc.
The mapping process of a certain post to a POl is fully dependent on the social
media platform in question and the possibilities provided by its respective APIL. The
completeness and coverage of available POIs that are included in the corresponding
taxonomies vary according to the technology penetration levels in different regions. In
general, affluent regions where the use of social media is popular are characterized by
ample coverage of online POl venues. The scarcity of place-related information strongly
affects the characterization of urban areas (Sengstock & Gertz, 2012). Moreover, there
exist several geo-tagged posts that are not linked with a specific POI, but rather with
a larger spatial unit (e.g. a neighborhood, a city, a county etc.), which further hampers
the approximation of land uses at the disaggregate level.
§ 5.3.2.2 Measuring density and diversity
The approximation of land use types from social media data enables the reformulation
of measurements pertinent to the density of activity patterns and the diversity
of functions. As it has been described earlier in this Chapter (see Sect. 5.2), the
measurement of these features of the built environment has been a long-standing
issue of urban analysis and planning. However, to date, they have been approached
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more qualitatively than quantitatively, due to lack of sufficient data. To be able to
measure the density and diversity of an urban area, the key variables to be considered
are the array of different functions, the number of people performing activities, the
amount of visits, and the temporal variation of activity patterns. In the previous
sections, it has been explained how each of these parameters can be derived from
geo-enabled social media and LBSNs. This section describes how these attributes can
enrich measurement of urban density and diversity.

According to (Cervero & Kockelman, 1997), the density of a place refers to the
intensity and relative compactness of activities in a given area, taking into account the
population and employment rates in this area, as well as the proximity of residential
units to other land uses. As an alternative to this, the number of individuals visiting an
array of POls in a certain area, the corresponding amount of visits, and the temporal
distribution of activity patterns can be used as proxies to measure the density of an
urban area. Therefore, the density of a spatial unit (y, v) (e.g. a neighborhood), within a
wider area m x n, in a given time period t, can be formally expressed as:

[N (u,v)]t

D(w,v,t) T YL SING DI

(5.4)

Where N(u, v) resembles the number of people attracted to the spatial unit (u, v) in a
given time period t, and N(j, j) is the total amount of visits in the wider area in question
(e.g. an entire city). In defining the variables, the number of individual social media
users visiting a predefined area (u, v) is used as proxy to measure the N(u, v) parameter,
whereas the number of individual posts (i.e. excluding multiple posts from a single user
in a short time interval) that are mapped to a specific POI within the wider region m x n
serves as a proxy for calculating the N(i, j).

On the other hand, the functional diversity describes the degree of land-use
heterogeneity in a given area, denoting the array of activities performed by people in
this district (Cervero & Kockelman, 1997; Hess, Moudon, & Logsdon, 2001). Thereby,
it can be expressed by an entropy index, as follows:

]
H(u,v) = —Kz Pi(u,v) ln[Pj(u, v)] (5.5)
j=1
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Where K is a positive constant (equivalent to Boltzmann's constant in thermodynamic
entropy) defined as K = 1/In(]), in which ] resembles here the total amount of activity
typesin the area (u, v), and P(u, v) indicates the proportion of people who perform

an activity type j within the area (u, v) and for a time period t (Zhong et al., 2015).
Respectively, the total number of activity types ] can be approximated by the array

of different POI categories within a predefined area (u, v), and the amount of people
carrying out a certain activity type j in this district can be measured by the number of
individual users visiting a specific POI category.

§ 5.3.3 Deriving Individual Spatial Movement Patterns

Traditionally, information on the spatial movement of people is extracted from

travel surveys, at the individual or household level. Although these sources are more
trustworthy and accurate than social media data, they take several years to be updated
and to subsequently become available for use.

The following paragraphs describe attributes of spatial movement that can be derived
from geo-enabled social media and LBSNs and can also be used to measure the spatial
distribution of human mobility over time.

§ 5.3.3.1 Individual trajectory

A'significant part of the dynamics of human activity in cities refers to the movement
patterns of individuals. Origin and destination locations are pivotal to measuring and
modeling flows (see Sect. 5.2.2). However, knowledge of the trajectories followed by
individuals that are mapped to the physical street network can provide better insights
into the laws governing human movement than origin-destination matrices. However,
accurate trajectory data are scarcely available. Typically, the main source used to derive
mobility patterns are travel surveys, at household or individual level, but information is
limited to a set of origin and destination locations at the time the survey is conducted.

Recently, mobile phone data and GPS records have been used as proxies for inferring
the actual trajectories followed by individuals (inter alia (Alhasoun et al., 2014; Bayir,
Demirbas, & Eagle, 2009; Calabrese, Colonna, Lovisolo, Parata, & Ratti, 2011; Diao
etal, 2015). Unlike travel surveys, these data sources are updated frequently and
individual trajectories can be extracted in the form of a spatiotemporal sequence of
activities (i.e. a set of geo-referenced phone calls or a GPS track).
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In a similar way, data from geo-enabled social media can also be used as proxies for
extracting human trajectories at the disaggregate level. However, compared to CDRs
or GPS records, the volume of social media posts generated by an individual is usually
much smaller. While a person can transmit several call signals throughout the day,
the posting activity of the same person on online social networks may be much more
sporadic. Therefore, the most comprehensive sources of social urban data, when it
comes to human movement patterns, are mobile phones and GPS systems.

Nevertheless, individual trajectories from geo-enabled social media can also be
inferred by means of extracting a spatiotemporal sequence of posts. In particular, the
geo-coordinates of a post — where available - are collected, in combination with the
time tag, together forming a triple {x; y; t;}, where x; and y; denote the coordinates
of a post in a location i at a given point in time t;. Although this sequence of posts
indicates a set of activities in chronological order, it is not by itself sufficient to
approximate the actual trajectory followed by an individual. In fact, it only indicates
how a person moves from one place to another, representing a set of origin and
destination locations, without evidence of the path that this person chose to follow. In
order to approximate the trajectory followed by an individual between two consecutive
posts, and to align it with the actual street network of a city, intermediate waypoints
between each origin and destination have to be determined. One way to determine
the intermediate waypoints is to collect the total daily social activity (i.e. the total
amount of geo-referenced posts generated in a single day) of a person in question
and, subsequently, calculate the distance between each two consecutive posts, in
addition to the time interval between these two posts. These data can then be fed into
a route calculation algorithm (such as the one provided by the Google Directions API*7)
to roughly approximate the intermediate waypoints of the trajectory (Figure 22). An
implementation of this trajectory extraction method is further explained in Chapter 6.

Destination Destination
R
7 Bt vty

FIGURE 22 Individual trajectory inferred from social media posts (1) as a simple spatiotemporal sequence, and (2) as a sequence
with intermediate waypoints.

47 https://developers.google.com/maps/documentation/directions/ (Accessed on December 30, 2015).
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§ 5.3.3.2 Activity spaces

The set of extracted POIs (see Sect. 5.3.2.1) can be used as proxies to infer the activity
territory of an individual over different periods of time. In general, the set of locations
frequently visited by a person on a typical day or a longer period of time comprises her/
his activity space (Axhausen, 2007). Based on this definition, the activity space of an
individual may include her/his place of residence, workplace(s), and a group of other
locations pertinent to leisure and recreational activities (Figure 23). Places of residence
can be inferred by means of the methods described in Sect. 5.3.1.1. Conversely,

workplaces and locations of leisure activities can be inferred from the extracted PQOlIs, as
described Sect. 5.3.2.1.

Activity space

Place of "‘1 |

: Grocery
Residence ctore

FIGURE 23 Activity space of an individual consisting of the place of residence (1st place), workplace (2nd place),
and a set of locations pertinent to other activities (3rd places).

The sum of the PQIs visited by a person in a given period of time, in addition to her/
his estimated home location and her/his approximated workplace, indicate her/his

activity space, derived from social media data. Formally, this could be described as
follows:

u
Npor

(4S), = z POI,(¢t) + (HL), + (WP), (5:6)

i=1
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Where (AS)U, is the activity space of a useru, nILDJOI resembles the total number of
extracted POIs visited by u, POL(t;) indicates the location of a POl at a specific point in
time, (HL)u is the estimated home location of the user, (WP)u and is the approximated
workplace (if applicable).

Unlike traditional urban data which usually indicate where people live - that is, in most
cases, where they spend the night - the extraction of activity spaces from social urban
data enables the characterization of urban areas according to the places where they
spend time during the day. Moreover, the extraction of activity spaces of two or more
social contacts (e.g. online “friends” or “followers"), derived from geo-enabled social
media and LBSNs, could give an indication of geographical places that are shared by
individuals belonging to a common network of social contacts (Wang et al., 2015).

However, one major limitation of geo-enabled social media and LBSNss, is that they do
not give an indication of the amount of time a person has spent at a specific location.
Also, the time tag accompanying social media posts does not necessarily resemble
the actual time a person visits a certain place. Further, the majority of social media
platforms do not give the possibility to users to explicitly indicate their departure time
from a location. This can only be estimated, to a certain extent, through textual analysis
of the post content (Cramer, Rost, & Holmquist, 2011; Frith, 2014; McKenzie et al.,
2015). Moreover, a certain amount of posts is not generated or tagged to the actual
moment an activity took place. In some cases, the online social activity (i.e. creating

a post) may refer to an actual activity (e.g. a visit to a specific place) that was carried
outin the past oris about to happen in the future. These temporal biases need to be
considered when using social media data as proxies for the analysis of human activity
over space and time.

Radius of gyration

The extraction of individual trajectories from social media data provides further insight
into the geographical extent of human activity (i.e. how far a person travels) and the
intensity of the movement flow (i.e. how often a person travels between places). This
information can be used to enrich metrics of human mobility and, more specifically,
the radius of gyration. The radius of gyration determines the extent of the activity
space of an individual (see also Sect. 5.3.3.2), in addition to the intensity of her/his
flow patterns (Figure 24). The time tags accompanying social urban data enable the
calculation of the radius of gyration for a given time interval (e.g. hourly, daily etc.).
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FIGURE 24 Radius of gyration, based on a person'’s trajectory as inferred from the sequence of social media
posts. Rarely visited places have low impact on the radius of gyration.

The radius of gyration is computed as the root mean square distance of an individual’s
location from the average location of all her/his transmissions within a given time
interval. (Gonzalez et al., 2008) used mobile phone data as proxies to calculate the
radius of gyration in the analysis of individual human mobility patterns.

Accordingly, in the case of geo-enabled social media data, the radius of gyration can
be described as the distance covered by an individual between locations (based on the
post history), as well as the frequency of this trip. By adding the temporal dimension,
the radius of gyration can be calculated as follows:

ny(t)

1
RO = [0 Z (¢ = %) + (= Y0)? 67

Where n U(t), represents the total number of posts generated by an individual within

a period of time t, x; and y; are the coordinates of a post in location i, x_and y . and
represent the center of the trajectory that is created by joining the single posts together,
and are defined as follows:
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Therefore, the variance between (x,-, yj) and (XC, yC) represents the distance between a
specific post of the user u and the average location of the total number of posts over
a specific period of time. In other words, it indicates how far a user travels to perform
certain activities.

From the equation (5.4) it can be inferred that a person who only carries out activities
within a short distance from the average location of posts will result in a low radius

of gyration. Conversely, a high radius of gyration characterizes a person who travels
long distances (in relation to the average location) to carry out certain activities. Also,
a person who only performs a few long-distance activities will produce a higher radius
of gyration, compared to a person who performs a large number of activities, yet only
within a short distance. As a consequence, the radius of gyration can be an important
metric in the analysis of the spatiotemporal dynamics of human mobility.

Extracting Topical Attributes

Unlike other contemporary sources of social urban data, such as sensors or mobile
phones, a distinguishing characteristic of geo-enabled social media LBSNs pertains to
their semantic richness. The majority of social media data consist of human-generated
content represented in a textual or other (e.g. image, video etc.) format, from which
topical attributes of human activity can be derived.

This section outlines methods to extract topical attributes of human activity by
analyzing the semantics and sentiments of social media content.

Semantics and sentiments

The analysis of the content of social media data has potential to derive topical
information on the type of activity one performs in a given place, which could deviate
from the place’s original function (e.g. studying in a coffee shop). Semantic analysis
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can be used to extract topical attributes from the content of social media data. Further,
it could be used to infer a certain type of activity, whenever a post is not directly linked
with a specific POI category.

The techniques that can be used to extract topical attributes from social media depend
on the nature of the platform in question. Microblogging platforms, such as Twitter and
Sina Weibo, primarily contain textual posts, expressed in natural language. Thereby,
natural language modeling and processing techniques can be used in this regard.
Conversely, platforms such as Instagram and Flickr, are mainly used for photo-sharing
purposes, but also give users the possibility to accompany photo posts with textual
content and hashtags. In this particular case, semantic analysis focuses predominantly
on the the textual elements of the post. Keyword and hashtag-based filtering comprise
the most frequently used techniques in this regard (Becker, Naaman, & Gravano,
2011). The mapping of keywords to ontologies, following the methodology presented
in Chapter 3, enables the semantic annotation of social media posts in a machine-
processable format, as well as the discovery of semantically similar topical attributes
between different posts.

Besides semantics, it also possible to extract sentiments from the textual content of
social media data. Sentiment analysis can be valuable for the estimation of a person'’s
views and feelings about a particular activity and, therefore, provide new perspectives
on aspects of human behavior in cities.

To explore and extract sentiments from human-generated textual content, established
taxonomies are required, to enable the classification of concepts into general
categories of emotions (Q. Gao, 2013). An exemplary taxonomy thereof is the one
developed by Ekman (Ekman, 1972), which identifies six general types of emotions.
These are namely: anger, disgust, fear, happiness, sadness, and surprise. This
taxonomy can be used to automatically detect emotions in microblogging streams (e.g.
Twitter) (Purver & Battersby, 2012).

In accurately inferring the sentiments of people, the main challenges are the limited
length of textual content, in combination with the extensive use of informal language
and abbreviations. Substantial filtering is, therefore, required in order for very short
terms - often referred to as “stop words"” - to be excluded. Common methods for

the extraction and analysis of sentiments include keyword spotting, lexical affinity,
statistical methods, and concept-based approaches (Cambria, Schuller, Xia, & Havasi,
2013), the detailed explanation of which is beyond the scope of this thesis. The
approximation of sentiments from social media streams has potential to provided
insights into the behavioral aspects of human activity.
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Contemporary sources of social urban data offer new possibilities for the analysis,
measurement, modeling, and characterization of urban space, and can be used as
proxies for gaining knowledge about the spatiotemporal dynamics of human activity.

This chapter focused on different types of attributes that can be derived from social
urban data and, in particular, geo-enabled social media and LBSNs. It described
methods and techniques that enable the extraction of socio-demographic attributes
of individuals, functional attributes of places, individual spatial movement patterns,
and topical attributes of human activity from social media content. The incorporation
of these attributes into urban analytics helps deviate from traditional approaches,

in which people and places are usually perceived as aggregate (i.e. average, mean, or
summed values) parameters within spatial subdivisions (e.g. census tracts). Further,
the chapter presented how the derived attributes help measure the functional density
and diversity of urban areas, as well as the geographical extents of activity spaces
over different periods of time. These measurements, along with the various methods
and techniques for attribute extraction, have potential to improve urban modeling,
simulation, as well as planning and decision support systems.

However, the inherent diversity and biases of social urban data and, in particular,
geo-enabled social media and LBSNs, pose challenges of accuracy with regard to the
approximated attributes. Accuracy levels may vary according to the platformin focus
and the policy it follows in terms of data sharing, modeling, and geo-referencing.
Validation by means of cross-checking with traditional urban data - where available -
is therefore recommended.

The set of attributes described here demonstrate that, besides space and time tags,
social urban data contain multiple information in relation to different aspects of
human movement, human activity and social behavior, and urban space that, if
accommodated in urban analytics, can provide richer descriptions of urban dynamics.
The methods and techniques described in this chapter set the foundation for the
design and are implemented in a system for the visualization, exploration, and
analysis of the spatiotemporal dynamics of human activity that is presented in the
following chapter.

Deriving Human Activity Attributes from Social Urban Data
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§ 6.1

Designing and Implementing a
System for the Visualization and
Exploration of the Spatiotemporal
Dynamics of Human Activity in Cities*®

Throughout this thesis, it has been stressed that the study of complex dynamic
processes in cities at various scales, requires the integration of data from several
different sources. A key issue of such processes is to understand how people interact
with the city - in fact, with the various components that comprise a city - and with
each other. Human mobility, activity patterns, and socio-spatial interactions play a
pivotal role in the establishment of planning strategies and policies related to land use,
transport, and infrastructure configuration. In deciphering the laws governing these
processes, the emergence of new data sources (e.g. sensor networks, mobile phones,
social media etc.) provide additional viewpoints to those extracted from traditional
urban datasets (Lazer et al., 2009).

The increasing availability of emerging data sources has recently instigated numerous
research studies, covering a variety of aspects pertinent to human mobility and
interactions. Large-scale trajectory data from sensors and GPS devices (Bazzani et al.,
2010; Giannotti et al., 2011) or taxi trips (Sagarra, Szell, Santi, Diaz-Guilera, & Ratti,
2015) have been used to unveil aspects of human mobility in cities at disaggregate
levels. Similarly, public transportation records from RFID cards have also proven
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Sect. 6.3 - 6.4 of this chapter are largely based on the following publications:

Psyllidis, A., Bozzon, A., Bocconi, S., & Titos Bolivar, C. (2015). Harnessing Heterogeneous Social Data to Explore,
Monitor, and Visualize Urban Dynamics. In Proc.: 14th International Conference on Computers in Urban Plan-
ning and Urban Management (CUPUM 2015), Cambridge, MA, USA: MIT, pp. 239:1-22. (Main author, 95%
contribution)

Psyllidis, A., Bozzon, A., Bocconi, S., & Titos Bolivar, C. (2015). A Platform for Urban Analytics and Semantic Data
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Springer Berlin Heidelberg, pp. 21-36. (Main author, 95% contribution)
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beneficial, in this regard. Analyses on such datasets have revealed strong diversities
as regards the volume of intra-urban flows (Roth et al., 2011) across temporal scales
(Zhongetal., 2016), similarities in individual interactions across different contexts
(Cattuto et al., 2010), or spatiotemporal patterns that can be used in models for the
prediction of individual visits to certain locations (Hasan, Schneider, Ukkusuri, &
Gonzalez, 2012). Empirical data from the geographic circulation of banknotes have
also been used as proxies for mathematically describing human travelling behavior
(Brockmann, Hufnagel, & Geisel, 2006), and for assessing the extent to which current
territorial subdivisions and administrative boundaries reflect the organizational
structure of present-day human connectivity (Thiemann et al., 2010).

Ininferring the features that characterize human interactions and mobility patterns,
the majority of recent studies have employed primarily mobile phone call detail
records (CDRs), from the palette of emerging social urban data. Some of the valuable
insights relate to the discovery of spatiotemporal regularities in individual human
trajectory patterns (Gonzalez et al., 2008) and mobility behavior (Bayir et al., 2009),
the appearance of temporal co-locations in physical space between people who belong
to the same social network, irrespective of distance (Calabrese, Smoreda, etal., 2011),
the influence of urban morphology on the distribution of intra-urban travels (Kang et

al., 2012), and to the extraction of attributes that can be used in transportation models

(Alhasoun et al., 2014; Calabrese et al., 2013; Diao et al., 2015). Relevant analyses
have inferred the spatial cohesiveness of regions across several countries, in relation
to their geo-political boundaries (S. Sobolevsky et al., 2013), the influence of social
segregation on human mobility patterns in both developed and developing countries
(Amini et al., 2014), commuting patterns across countries and global cities (Grauwin
etal.,, 2015; Kung, Greco, Sobolevsky, & Ratti, 2014), and to the impact of city size on
human interactions (Schlapfer et al., 2014).

Increasingly, more attention has turned to data from various LBSNs, especially
because of their semantic richness and ability to provide information about both
spatial and social properties of human activities (Noulas et al., 2011, Scellato et al.,
2011). Social media data can, in effect, be used as proxies for investigating the spatial
distribution of social activity and its evolution over time. From a network perspective,
the analysis of LBSN data can shed light on a significant type of urban network,

in particular the activity network of cities, which extends the notion of mobility
networks. Activity networks comprise interactions between places of social activity,
which in turn accommodate the networks of social interactions between people. It

is generally difficult to explore such complex socio-spatial networks using the data
sources that were mentioned in the previous paragraphs, since they lack semantic
annotations, such as place-based geo-tags and comments enriched with topics.

The growing pervasiveness of geo-enabled social media and LBSNs, in combination
with the relatively accessible APIs, has allowed the performance of studies about
activity networks across several urban systems (Noulas et al., 2012), and nation-
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wide explorations of inter-urban travel patterns (Liu, Sui, Kang, & Gao, 2014). The
semantic richness characterizing the content that accompanies LBSN records allows
the extraction of information about POIs, which can be fed into LUTI models (Jiang et
al., 2015), the approximation of social activities in urban space at high spatiotemporal
resolution (Steiger et al., 2015), the measurement of city attractiveness for particular
groups of people (Stanislav Sobolevsky et al., 2015), and the analysis of intra-
neighborhood deprivation and social segregation (Quercia & Saez-Trumper, 2014;
Shelton et al., 2015).

Despite the multiplicity of insights into several aspects of human mobility and activity
patterns, the results are generally prone to limitations and biases pertinent to each of
the aforementioned data sources. Forinstance, GPS track records, sensor and RFID
card data usually stem from a single provider and subsequently cover a certain type
of transport modality. Mobile phone CDRs comprise proprietary sources that are also
acquired from a single operator, and their representativeness is dependent on the
operator’s user penetration rates. Conversely, data from LBSNs can be rather “noisy”,
have several limitations in terms of data lifespan and changing API policies, and may
insufficiently represent certain societal groups. And traditional urban data sources
(e.g. censuses, surveys, socio-demographic records etc.) have infrequent update
rates, varying spatial resolutions, and, in many cases, are not publicly available. These
limitations have already been discussed at length in the previous Chapters (especially
in Chapter 2). One way to mitigate the limitations and biases is the consideration

of more than one data source. However, this requires data integration, which - as
discussed in Chapter 3 - is not a straightforward procedure.

The aforementioned challenges motivate the need for tools that enable the
simultaneous combination of urban data from various sources, to allow for enriched
urban analytics. To this end, this Chapter presents the design and implementation
of a web-based system - coined SocialGlass*® - that facilitates the integration of
heterogeneous social urban data, and enables the exploration and visualization of
human activity patterns in cities, at various spatial and temporal scales. Inits current
implementation, the system combines data from several geo-enabled social media
(namely, Twitter, Instagram, and Sina Weibo) and LBSNs (i.e. Foursquare), publicly
available socio-economic urban data (presently focusing on Dutch urban systems),
data from web-enabled sensor networks, and further provides mechanisms for the
incorporation of custom sources. Data integration processes are founded upon the
methodology described in Chapters 3 and 4. In addition, the system incorporates
modules that extract and analyze the set of attributes described in Chapter 5

SocialGlass has been designed and developed in collaboration with Dr. Alessandro Bozzon, Dr. Stefano Bocconi,
and Christiaan Titos Bolivar of the Web Information System (WIS) group, EEMCS, Delft University of Technology
(TU Delft).
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(e.g. home location, socio-demographic attributes, individual trajectory, radius of
gyration etc.). Besides its module-based backend structure, the system provides

an interactive map-based Ul with various visualization and filtering possibilities,
alongside a dashboard for real-time monitoring of social activity and flows. The system
relies entirely on open-source technologies and open data.

In the remainder of the Chapter, the proxies for attributes of social activity that are
used by the system are first introduced (Sect. 6.2). Next, the data sources that are (or
could be) integrated into SocialGlass are described (Sect. 6.3). Sect. 6.4 presents the
various components and modules comprising the system architecture. In Sect. 6.5, an
instance of the system is put to use in a real-world case study, to assess the capacities
and limitations of SocialGlass in exploring the dynamics of urban social activity. An
additional spatial analysis on the obtained findings is also presented. The Chapter
concludes by reflecting on the flaws and benefits of the system.

The spatial patterns of social activity entail a multiplicity of interactions between
people, places, and people with places that are built on different types of physical or
social networks. In turn, each of the interacting components is further characterized
by several attributes that distinguish it from others and also determine the type

of activity and the type of relation between them (Michael Batty, 2013b; Herrera-
Yague et al.,, 2015). Different sources of data represent differently the attributes that
characterize the interacting components (i.e. people and places). Authoritative records,
such as population censuses and socio-economic data still remain the most accurate
and trustworthy source of information with regard to these real-world attributes.
Conversely, data from online social media indicate a partial image of reality, using
different notions to characterize real-world objects. To a great extent, this has to do
with the nature of social medjia; in particular, the fact that they were designed to serve
purposes, different than that of spatial analysis. Yet, inasmuch as the system that is
presented in this chapter incorporates and integrates both of these sources, there

is a need for a mapping between the real-world attributes of social activity and their
approximations in social media data.

The introduced proxies revolve around two basic factors of urban social activity; people
and places. Respectively, the level of disaggregation is by individuals and activity
locations. The latter are characterized by certain positions in space, as well as by a

type of activity, which in turn relates to how the different components (i.e. places

and people) interact with one another. The most representative approximation of
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an activity location within an online location-based network is a POIL In turn, POI
categories operate as proxies for activity types. Individuals, on the other hand, are
characterized by several socio-demographic attributes that are attached to them. In
social media data, these can be approximated to a certain degree through the methods
discussed in Chapter 5 and also described later in this chapter. Additional levels of
disaggregation include the types of interaction that can be established between the two
fundamental components. These specifically refer to interactions of individuals with
activity locations, interactions between individuals, and interactions between activity
locations. The taxonomy is, therefore, extended to include the proxies for the attributes
that characterize the aforementioned interaction categories (Table 15). The entire

set of introduced proxies is subsequently translated and organized into modules that
comprise the system architecture of SocialGlass, as discussed in the following sections.

TABLE 15 Proxies for attributes of social activity in urban space.

Level of Disaggregation Attribute (real-world) Proxy (LBSN)
Activity location Place name (“Third” place) POI
Activity type POI category
Individual Age Profile picture (est. age range)
Gender Name & Profile picture (est.)
Ethnicity Name & Posts language (est.)
Place of residence Estimated Home Location (HL)
Social category:
Resident HL e (City n Country in focus)
Non-resident HL ¢ City | HL € Country in focus
Foreign visitor HLe¢ (City n Country in focus)
Interaction 1:
Individual with Activity location Visit Gheckeni(Past)
Unique visit Post ID
Time Timestamp
Location Geo-tag
Activity category POI category
Individual LBSNID

Individual demographics

Age range (estimated)

Gender (estimated)

Ethnicity (estimated)

Individual role

Resident (est. home location)

Non-resident

Foreign visitor

Activity type

Topic (content semantics)

Opinion

Sentiment (content semantics)

181  DesigningandImplementinga Systemforthe Visualizationand Exploration of the Spatiotemporal Dynamics of Human Activityin Cities



TABLE 15 Proxies for attributes of social activity in urban space.

Interaction 2:

Individual with Individual

Level of Disaggregation Attribute (real-world) Proxy (LBSN)
Type of social tie LBSN contact
Individual demographics Age range (estimated)

Gender (estimated)

Ethnicity (estimated)

Individual role Resident (est. home location)

Non-resident

Foreign visitor

Interaction 3:

Activity location with Activity

location

Link Path segment

Flow Path segment weight (number of
OD visits)
Activity category POI category

182

Human activity and its distribution over space and time is a complex phenomenon
that merges together features of both the social and the spatial sphere of the urban
system. It primarily refers to how people make use and experience urban space. This
involves the daily trajectories of individuals around the city (i.e. human movement),
which in turn determine the volume of connectivity between places, i.e. the spatial
flows. But it also relates to - and is often affected by - the social connectivity (i.e.
social interactions) between individuals who perform these activities over space and
time (Grabowicz, Ramasco, Goncalves, & Eguiluz, 2014; Toole et al., 2015; Wang et
al., 2015). Moreover, as regards the aspect of experience, people’s sentiments and
opinions also play an important role. Activities are not necessarily in accordance
with the function of the place. An example of this could be a café, where both leisure
and study activities can be accommodated. To explore such a complex socio-spatial
and dynamic phenomenon, it would be insufficient to use data from a single source.
Thereby, the combination of multiple sources of social urban data is deemed necessary.

On the one hand, this poses great challenges to interoperability. As discussed
in Chapter 2, social urban data are generally characterized by different levels of
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completeness, representativeness, resolution, timeliness, semantic expressiveness,
and trustworthiness, depending on the source that generates them. These in turn
resultin various syntactic, schematic, and semantic heterogeneities (see Sect. 3.2.1).
On the other hand, the combination of heterogeneous data allows to mitigate one
source’s weaknesses, by using information included in another source. Drawing

on this, the backbone of the SocialGlass system is data integration. In its current
implementation, SocialGlass merges together three major types of sources, namely
official open data repositories, sensor networks, and online location-based social
media (i.e. geo-enabled social media and LBSNs).

First, open data from official repositories can be manually uploaded to the system.

In the case where such repositories are supported by an API, custom requests can

be made through the system to retrieve the data needed. However, the requests are
carried out in the backend, which means that a user cannot simply call a specific API
from the system’s frontend. The Amsterdam instance of the CitySDK Linked Data
API*°is one such case, from which real-time data about parking capacity are retrieved
and incorporated into the system. Socio-economic and demographic information is
extracted from publicly available census data by the Dutch Central Bureau of Statistics
(CBS)>*. The currently implemented instance of SocialGlass contains data from the
census of population in 2011. This specifically includes the population of residents,
classified by age, gender, and income, along with their geographic distribution over
census divisions. Information on crime rate is also included. Unlike CitySDK data, the
CBS records cover the whole national region of the Netherlands and, hence, the entire
Dutch urban system. However, this does not mean that the system can be used only in
the context of Dutch cities. It can also accommodate relevant datasets from virtually
any city worldwide, provided that they are first uploaded to the system. Nevertheless,
census and other related data from open repositories do not comprise appropriate
sources for retrieving information about human activities. Their main role is to provide
aggregate information about the socio-economic and demographic characteristics of
urban areas and their population and, hence, give context to social activity data.

Second, GPS traces extracted from sensor networks can also be valuable, when it comes
to flow volumes between places, even in real time. Therefore, SocialGlass incorporates
mechanisms to additionally support this type of source in its architecture (in particular,
its real-time dashboard instance). However, it should be noted that sensor data are
more appropriate for analyzing human movement than human activity. The lack of
semantics or any other contextual information about the monitored elements, can only
address aggregate observations on human movement and space occupation.
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http://citysdk.waag.org. Accessed on April 3, 2016.

http://www.cbs.nl. Accessed on April 3, 2016.
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Third, various geo-enabled social media and LBSNs constitute the most significant
type of source in the SocialGlass system for deriving human activity data. In general,
using online LBSN data one can extract information about the spatial distribution of
social activity over time, and about the social connectivity between individuals (inferred
by online “friendships”). Itis also possible, through analysis, to derive information
about topics, opinions, and sentiments in relation to the performed activity. The
currently implemented instance of the system focuses primarily on the spatiotemporal
dynamics of human activity, as well as the semantics and sentiments of human social
activity. To this end, it presently contains mechanisms to integrate data from Twitter,
Instagram, and Sina Weibo. Also, POI-related data are derived from Foursquare. Each
one of these platforms is used for communicating different facets of social activity

and, thereby, provides different opportunities to infer how people make use of the

city. Twitter and Weibo are microblogging platforms whose posts mainly comprise
short messages that can be accompanied by pictures or other media. Instagram is
primarily an image-sharing platform, which also supports geo-location and textual
descriptions. Foursquare is a local search and discovery service that is also used for
place recommendation. User penetration varies from platform to platform, as well as
from one geographical region to another. For instance, Sina Weibo is highly popularin
China, but it is minimally adopted elsewhere. Therefore, each LBSN source has different
levels of sample representativeness. Moreover, as the system takes into account only
geo-located posts, the sample of available data dramatically decreases in volume. For
this reason, SocialGlass integrates data from more than one social media platform,
while giving further possibilities to incorporate new ones. In so doing, the greatest
challenge is to simultaneously accommodate the different data crawling possibilities,
based on each platform’s API. Also, unlike the first two types of sources, the attributes
derived from online social media are approximations of real-world features. One of the
main requirements of the system is to provide mechanisms that support the extraction
of the proxies presented in Table 6.1, and were described in the previous chapter.
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Inimplementing the system, a modular architecture®?is employed to accommodate
the various steps from data crawling to visualization (Figure 25). The basic idea behind
it, is that different tasks of the process are assigned to different software modules. In
turn, the functionality performed by each module determines its connection patterns,
that is, the other modules that it directly communicates with. The inter-module
communication is achieved by means of message queues (Silberschatz, Galvin, &
Gagne, 2009). This means that each module receives information from related ones
(e.g. modules that perform certain tasks pertinent to a particular process) in the form
of messages. Then, after processing the received message, it may also send messages
to other modules that expect this information to complete a certain procedure. In this
way, the system can be quite easily extended with new modules, performing tasks that
might have not been considered initially (e.g. to integrate a new source, such as an
additional social media platform), without posing significant challenges to the already
existing structure and system functionality.

The first step in the process is about data ingestion and retrieval. The former comprises
mechanisms that support data upload (e.g. census data), whereas the latter relates

to the process of data crawling (e.g. from social media APIs or from APIs of official
repositories). Next, after filtering and storing the retrieved data in a database, semantic
integration processes are carried out. This helps to enrich the extracted information
and proxies, following an ontology-based integration approach (see also Chapter

3). The following step concerns the visualization of the extracted information, using
multiple types of data visualization in the form of layers, on top of a map-based UL
Finally, in the case of monitoring activity patterns in real time, the various datasets are
visualized in a dashboard format, containing several widgets. The creation, editing, and
monitoring of running analyses can be carried out through an admin interface.

In accordance with the four aforementioned general steps, the various modules that
comprise the system are organized into four main components. These respectively
cater to (a) data ingestion and analysis, (b) semantic enrichment and integration, (c)
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The system architecture documentation of the SocialGlass system is available on GitHub, at the following link:
https://github.com/WISDelft/SocialGlass/wiki/Development-Guide-2.-Architecture. Accessed on April 5,
2016.
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exploration and visualization, and (d) real-time monitoring. The first two components
constitute the backend of the system, whereas the remaining two pertain to its
frontend.
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First, the data ingestion and analysis component accommodates modules that
perform the tasks of data collection, filtering (cleansing), storage, user modeling, and
mapping to specific POIs within a city in question. The collection of data from online
social media is done by means of listener and crawler modules. At present, the system
consists of three listeners that respectively retrieve data from the APIs of Twitter,
Instagram, and Sina Weibo. The latter is mainly used in the context of Chinese urban
systems. Since the focus is on the geographical distribution of human activities, the
system takes into account only geo-tagged posts (either accompanied by an exact
geo-location or mapped to a specific POI) from the aforementioned social media. In
addition, data retrieval is limited to the posts that are generated within a predefined
area of interest. This could be specified either through a bounding box (in the case

of Twitter and Sina Weibo) or through a circle with a maximum radius of 5km (in the
case of Instagram), according to the respective APl documentations. For larger cities,
multiple circles can be specified to cover wider regions. The incoming data are filtered,
so that it is ensured they were generated by people and not by software bots. The
filtered data are then stored in an open source relational database, namely PostgreSQL,
to be further processed by specific modules that are designed to extract certain
attributes (e.g. individual demographics, approximation of home location, calculation
of the radius of gyration, origin-destination (OD) path extraction etc.). As stated in the
previous section, the attributes are disaggregated at the level of individuals and POls.
Therefore, the component contains modules for the extraction of individual socio-
demographic attributes from social media (e.g. age, gender, ethnicity, home location);
the mapping of individual activity to specific POIs (e.g. to categories included in the
Foursquare API); the calculation of mobility and spatial interaction metrics (e.g. radius
of gyration, OD paths), and the analysis of semantics and sentiments included in a
post. The extraction and analysis of the aforementioned attributes, with the exception
of socio-demographic variables, is mainly based on the history of posts generated by an
individual. Therefore, the corresponding modules can perform their tasks only after the
various crawlers have received a sufficient amount of posts. The modules are analyzed
in further detail in the following section.

Second, the semantic enrichment and integration component caters to the integration
of the heterogeneous source data. The employed approach is based on domain
ontologies that can be uploaded to the system. The incoming data are then mapped
to ontology classes, following the methodology described in Chapter 3. The generated
RDF triples are stored in a persistent repository and can be queried through a
dedicated SPARQL endpoint. Following up on this step, the semantically annotated
datasets (posts) are fed into modules of the first component, for further analysis. The
data ingestion and analysis, together with the semantic enrichment and integration
component comprise the backend of the SocialGlass system.

Third, the data exploration and visualization component is one of the two components
that comprise the system'’s frontend. Its implementation consists of an online
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interactive map-based user interface, which accommodates several options to
visualize and filter the various collected data. The system organizes different types

of visualization and data sources into layers (see Appendix C, Figures 32 - 34). This
means that one can plot the data from a single or multiple sources of interest on

top of the map illustrating the area in question, using different layers for each plot
type. In this way, it is possible to compare multiple plots on top of one another,

which may pertain to different sources and depict different attributes. The currently
implemented plot types include dynamic point clusters, activity heat maps, OD paths,
path routes, and various choropleth visualizations. The dynamic point cluster plots
are more appropriate forillustrating the amount of social media posts generated
from a given urban region, by dynamically distributing them over more disaggregate
spatial divisions as one gradually zooms in (see Appendix C, Figure 35). Conversely,
the activity heat maps show the aggregate intensity of social activity in geographic
space, over certain periods of time. Through the use of time sliders, it is possible to
explore the change in activity patterns in the course of a day (see Appendix C, Figure
36). With regard to exploring human movement, the system currently provides two
plot types, namely OD paths and path routes (i.e. individual trajectories). The former
creates a spatial network, where nodes represent POIs and links (arc edges) represent
the interaction between the PQOIs, as extracted from the online visits of individuals.
Besides interactions, the paths also accommodate flows, represented by the weights
on the arcs of the graph (i.e. larger flows result in larger edge thickness and color
density), indicating the amount of trips from a certain POI to another (see Appendix
C, Figure 37). Conversely, path routes, plot the interactions between POIs (i.e. visiting
patterns of an individual) on top of the street network of the city in question. Therefore,
the edges of the network illustrate the exact route followed by a person from one POI
to another (see Appendix C, Figure 38). Again, the line thickness and color density
indicate the volume of connectivity (i.e. flows) between POIs. The system further
supports choropleth maps, in which spatial subdivisions (i.e. neighborhood or district
polygons) are shaded in proportion to the value of data attributes. These may refer to

the geographic distribution of posts, POls, and various socio-demographic attributes of

individuals (e.g. age, gender, resident, commuter, foreign tourist etc.). Moreover, data
can be filtered by POI category, time span, type of individual, gender, age, or queried
by keywords. Also, several graph representations are supported to provide additional
information about the daily distribution of social activities, the semantics of posts,
and the socio-demographic composition of spatial subdivisions (see Appendix C,
Figure 39).

Finally, the real-time monitoring component is complementary to the previous one,
and specifically caters for the (near) real-time visualization of data streams retrieved
from sensors and various online social networks. This particular component mainly
consists of a dashboard that employs several graphical representations of the
collected data (e.g. charts, timelines, word clouds, choropleths etc.), and operates in
parallel to the map-based interface. In general, the real-time component is mostly
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suited to continuous measurements that only relate to specific aspects of the city
(e.g. human flows), rather than to urban analytics, which require further abstraction
and aggregation. Overall, the manipulation of the system, including the initiation of
new empirical experiments and the upload of custom data, is carried out through a
dedicated admin interface.

Organizing Proxies into Modules

Each of the above-described components comprises several modules that perform
specific tasks. Besides data retrieval, the majority of the implemented modules infer
attributes of social activity from social media data, by using the proxies listed in Table
15. In this section, the various modules that comprise the SocialGlass system are
described in further detail (see Figure 25).

The key role among the modules is played by the listeners and crawlers, as they are
responsible for feeding data into the system. The former retrieve posts from the APIs
of online social networks, whereas the latter focus specifically on individuals (i.e. social
media users) and their post history. The system currently combines data from three
geo-enabled social media, namely Twitter, Instagram, and Sina Weibo. Respectively,
three listeners and three crawlers are implemented. To initiate the data retrieval, a
geographic area needs to be defined first. For Twitter, this would be a bounding box,
surrounding the area in focus. For Instagram, a circle (or several circles, each) with a
maximum radius of 5,000m is defined instead, according to the API requirements.
Similarly, for Sina Weibo, a circle (or several circles, each) with a maximum radius of
11,132m has to be drawn. In the case of large cities or metropolitan regions, several
overlapping circles have to be defined to cover the entire area in question.

Although Instagram and Sina Weibo allow the retrieval of the entire post history of the
users within the predefined areas, the Twitter streaming API (i.e. publicly available data
feed) provides a 1% sample of the entire set of public tweets included in the so-called
‘firehose’ (proprietary feed). Despite this, a recent study by (Morstatter et al., 2013) has
shown that the Twitter streaming API returns almost the entire set of geo-tagged posts
within the predefined area. Therefore, geo-tagged tweets, which are of interest to the
system, are well represented in the given sample.

The collected posts are subsequently filtered, in order to exclude those that have
been generated by software bots. Then, based on each unique user ID (detected by
the listeners) from each one of the three social media platforms, the corresponding
crawler modules perform two types of data crawling; namely, forward and backward.
The former, retrieves posts that are generated by a person after the start of the data
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collection period. Contrariwise, in backward crawling the focus is on the person’s post
history, that is, the posts that have been generated prior to the starting point of the
data collection period. The collected posts are sent by means of messages to one or
several queues for the extraction of specific attributes and the calculation of activity-
related spatial metrics.

The remaining modules of the system, mainly under the data ingestion and analysis
component, are dedicated to extracting attributes of an individual and of the
distribution of her/his activity over space and time. These attributes include the
person’s demographics, role, and home location. Also, the modules extract the places
s/he has visited and the links (paths) between these places, calculate the radius of
gyration, and analyze topics and sentiments about the various activities performed.
However, the current implementation of the system has no specific modules, dedicated
to deriving the social contacts of an individual.

At the level of individuals, the system approximates demographic attributes, such as a
person’s age range, gender, ethnicity, home location, and role (see also Table 15). The
first three attributes (i.e. age, gender, and ethnicity) can be inferred immediately after
the listeners identify a new user. On the contrary, the remaining attributes require a
certain amount of posts to be retrieved through backward crawling (i.e. a person’s post
history), before being estimated and assigned to the person in focus. For the estimation
of anindividual’s age and gender, the demographics module uses as proxies the first
name and profile picture of a person’s social media account. This information is sent

to three external open-source web services®® that respectively determine the gender,
age range, and country of origin, along with a confidence interval, and return the results
back to the system. For privacy issues, the name and profile picture do not remain

into the system'’s database and only the values of the returned results are taken into
account for further processing. Thus, individuals are solely identified by an anonymized
user ID and the values of the three aforementioned attributes.

For the estimation of a person’s home location, the corresponding module carrying
out this task implements the method defined in Sect. 5.3.1.1 and, in particular, the
recursive grid search by means of geohashes (see also Figures 20 - 21). The iterative
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To determine the gender of an individual, the demographics module sends the first name to the open-source
web service Genderize (https://genderize.io). In addition, the module sends the profile picture of a person’s
account to an open-source web service for face detection with the name Face++ (http://www.faceplusplus.
com). The latter gives back an age range and gender estimation with high estimation precision (generally >90%).
As regards the gender estimation, in the case of conflicting results between the two services, the corresponding
values are first sent to a Decision Tree that is trained on human-annotated data. Then, only the outcome of this
process is sent back to the demographics module. With regard to the estimation of the country of origin, the
module retrieves the “country” field from a person’s account and sends it to GeoNames (http:/ /www.geonames.
org) (see also Chapter 3) to ensure that the retrieved value corresponds to a real place.
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clustering of a person’s geo-tagged posts (retrieved from the post history through
backward crawling) into geohashes of increasing granularity allows finer accuracy than
simply considering home location as the center of mass of all posts a person generates.
In addition, the module takes mostly into account the posts that have been created
between 6pm and 8am, which would most likely originate from a person’s actual
home location. Drawing on the approximated home location, an additional module

receives this piece of information and determines the role of an individual in relation to

the city in focus. The system enables a classification into three different roles, namely
residents, non-residents, and foreign visitors. When the estimated home location is
placed within the predefined boundaries, then a person is inferred a resident of this
region. In any other case, the person in focus is considered a non-resident, when the
approximated home location is within the same country that the predefined area
belongs to; or a foreign visitor when none of the previous two conditions applies.

The second set of attributes pertains to places and, in particular, POIs. Besides home
location, which is considered a “first place” in an individual’s activity space, POIs
constitute “third places”, where people most likely interact with one another. These
places are the major condensers of social activity in cities and, thereby, constitute

an essential indicator of social life and activity behavior in urban space (Rosenbaum,
2006). At the moment, places of employment or second places can only be inferred
indirectly by the system, through text mapping and topical analysis, which will be
later discussed. The module responsible for the extraction of POIs from the collected
posts, retrieves relevant information from four different geo-enabled and location-
based social media; in particular, Twitter, Instagram, Sina Weibo, and Foursquare.
This information comprises the set of latitude and longitude coordinates of a PO],
the POI name and category, as well as its popularity among social media users (based
on a ranking algorithm). The aforementioned attributes are assigned to a unique POI
ID. The module implements mappings (of posts) to certain POIs, by means of various
mappers (e.g. a PostGIS mapper that maps posts on the basis of PostGIS queries to
the PostgreSQL database, two foursquare mappers for Twitter and Instagram posts
respectively, and a Weibo mapper). The extracted information is then sent to other
modules in the pipeline that carry out more specialized tasks.

The extraction of POIs from the various collected posts allows the measurement of
mobility-related aspects of human activity. These measurements provide further
insights into the geographical extent of individual activity spaces and the volume of
connectivity between places. Respectively, the system accommodates two modules for
the calculation of the radius of gyration and for the extraction of OD paths and flows.
The radius of gyration is calculated by the corresponding module, according to the
equation defined in Sect. 5.3.3.3, in particular:
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As can be drawn from the equations above, the generation of new posts by an
individual largely influences the radius of gyration. Therefore, the module iteratively
recalculates the radius of gyration, each time a new post is created by the personin
focus (see also Figure 24).

Aside from the radius of gyration, the system further extracts the set of individual daily
trajectories between POIs (see also Figure 22). The trajectories are constructed from
the sequence of consecutive posts generated by a person on a given day. Each time an
individual creates a geo-tagged post in any of the social media platforms involved, the
system records the respective geo-location and is, therefore, able to reconstruct the
evolution of an individual’s trajectory over time. In addition, the corresponding module
measures the intensity of the interaction between POIs, i.e. the flows, by calculating the
amount of individuals moving from one place to another (as inferred by their posting
activity). However, the trajectories are limited within the area defined by the bounding
box. The extracted trajectories and flows are, subsequently, visualized as paths (edges)
that either connect directly the various POIs together (curved edges) or follow the
street network of a city, as described in the previous section. Taking advantage of both
forward and backward crawling, it is possible to extract the entire set of trajectories
from a person’s post history, as well as those created after the start of the data
collection period. One may also configure the level of temporal (dis)aggregation, so
that the extracted trajectories represent the hourly or weekly flows. In embedding the
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trajectories in the street network of a city (instead of simple connector lines between
POIs), the module estimates a number of intermediate waypoints> between the
origin and destination POIs (see also Sect. 5.3.3.1). In this way, it is possible to make
arough estimate of the route followed by a person, or group of people, when moving
from one place to another. However, the accuracy of the route estimation decreases
substantially, when the distance and the number of street intersections between two
consecutive POIs increase.

Although individual movement patterns are essential to understanding the spatial
interactions between places and their evolution over time, it is equally important to
gain insight into the type of activity performed in these places. As stated previously,
POI categories are indicators of different activities, but may not necessarily reflect

the actual activity that is carried out by an individual, or group of people, in any of the
POIs. In addressing this challenge, additional modules are implemented, dedicated

to semantic and sentiment analysis. The semantic analysis module extracts words

and topics from user-generated posts and maps them to a related type of activity>,
whereas the sentiment analysis module identifies sentiments from the post content
that range from highly positive to highly negative>®. Prior to performing these tasks, a
supplementary module first detects the language® used in a user's post. This piece of
information is subsequently fed into the semantic and sentiment analysis modules.
However, in the current implementation, semantic analysis is supported for content
thatis written only in English. Although, there are fluctuations in terms of accuracy
levels of both semantic and sentiment approximations, they have potential to increase
the understanding of what type of activities people perform in various places and times
of the day.
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In estimating the intermediate waypoints, the module calls the open-source Google Directions API (https://de-
velopers.google.com/maps/documentation/directions/). However, the free and open version of the API allows
a maximum of 8 waypoints to be estimated between an origin and a destination. Therefore, complex street
networks with multiple intersections largely influence the estimation accuracy.

The extracted words are mapped to relevant entities in DBPedia Spotlight (https://github.com/dbpedia-spot-
light/dbpedia-spotlight). This allows the creation of topic profiles, as well as the inference of activities from the
textual structure of posts.

At present, sentiment analysis makes use of the SentiStrength software (http://sentistrength.wlv.ac.uk), which
is freely available for academic use.

Inidentifying the language used in posts, the system makes use of the shuyo language detection Java library
(https://github.com/shuyo/language-detection).
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Exploring and Analyzing the Distribution of
Social Activity over Space and Time

At anintra-urban level, human activity and mobility behavior may largely vary,
depending on the time of the day or night and the city district or neighborhood.
Correspondingly, city-scale social events potentially generate spatial and temporal
fluctuations in the distribution of activity and mobility patterns. Therefore, they can be
good examples to test the capacity of the system and its various components for the
potential detection of such fluctuations, based on insights from different sources of
social urban data. The Amsterdam Light Festival (ALF) 2015, an art-related city-scale
event with a duration of two months, is used as a case study to explore the potential
impact of the event on the daily activity and mobility behavior of different groups of
people. Social media data from heterogeneous sources are used as proxies for the
social activity behavior of different social categories and its distribution over space
and time. In addition, they are used to explore the potential formation of spatial and
temporal patterns of human activities before, during, and after the event. To this end,
the system is configured to continuously crawl data not only throughout the event
period, but also two weeks before the start and two weeks after the end of the event.
This is to detect any variations in the intensity of activity that are likely to occur.

The main hypothesis is that the event influences the overall activity and mobility
behavior of all social categories (i.e. residents, non-residents, and foreign tourists),
especially in the areas where the event takes place. In particular, it is expected that

the volume of activity will increase, in comparison with its corresponding intensity

the weeks before and after the event. To test this hypothesis, the system collects

and combines data from various social media (listener and crawler modules) and
distributes them spatially and temporally over the postcode area districts of the city of
Amsterdam. Subsequently, each of the modules extracts or estimates certain attributes
from the collected data, throughout the monitoring period, as discussed in the
previous section. Then, the extracted or estimated attribute values are visualized in the
system's frontend, providing several possibilities for visual cluster identification, spatial
autocorrelation, and temporal fluctuation. Besides these visual exploratory approaches,
an additional spatial autocorrelation analysis is performed on the empirical data, to
further measure the degree of activity clustering.

Dataset

In exploring the spatial and temporal organization of human activities over a short
time period, it is generally difficult to extract relevant information from traditional
data sources, such as the census or travel surveys. Although they are highly reliable
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sources of information about cities, their rather infrequent updates (e.g. once in ten
years) pose a major limitation to the issue in question. Therefore, alternative data
sources are needed that are able to relate information about human activities with
their distribution over geographical space, at short time scales. Data from LBSNs

(e.g. Foursquare) and geo-enabled social media (e.g. Twitter, Instagram) comply
with this requirement, although they mainly provide indications of the whereabouts
of (a sample of) people, as broached throughout this thesis. Despite this, the public
availability of these datasets (by means of calls to the corresponding APIs), which
isin agreement with the general principle of openness in terms of the data and
technologies used in this thesis, is a considerable advantage. Especially in comparison
with related data sources, such as CDRs, which may also approximate activity in
geographic space over short time periods, yet at a high cost and with insignificant
semantic information (see also Chapter 2). As a result, data from Twitter, Foursquare,
and Instagram are used as proxies for the spatiotemporal distribution of human
activities in the case study.

The data collection is carried out using the corresponding listener and crawler modules,
under the data ingestion and analysis component of the SocialGlass system. In total,
the observation period covers three months, which correspond to the two-month
duration of the event, the two weeks prior to its start date, and the two weeks after the
event finishes. More specifically, the overall period is between November 13, 2014

and January 31, 2015, with the starting date of the event on November 27, 2014 and
the end date on January 18, 2015. The system collects solely geo-located data that

are generated within the city region of Amsterdam, as inferred by the geo-tag or the
accompanying POI location, for the aforementioned time period. The resulting datasets
comprise 26,740,669 geo-tagged posts from Twitter (linked to Foursquare POIs)

and 15,959,566 posts from Instagram. The collected records generally consist of the
anonymized user ID, the latitude and longitude coordinates of the POI (retrieved from
Twitter and Instagram posts, and aligned with POl information from Foursquare), the
POI category, the timestamp, and demographic information, such as gender and city of
residence, where available. In the cases where demographic information is missing, it
is approximated by the corresponding modules of the system, regarding an individual's
home location, role, gender, age range, and country of origin.

In addition to the above, demographic and socio-economic data from the 2011
census (Statistiek, 2011) are also integrated. These include the total population, the
number of male and female residents, the age range, and income in the city region of
Amsterdam. This information allows comparisons with the records that are collected
from the different social media sources, especially in terms of representativeness.

For privacy reasons, the demographic and socio-economic data are aggregated into
spatial divisions with varying levels of detail. The latter range from the municipal level
to the district and neighborhood level (Statistiek, 2014). The chosen level of spatial
division for the case in focus is the neighborhood level (i.e. postcode area, based on the
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Dutch postcode system), which corresponds to the maximum granularity available.
Especially for the performance of spatial autocorrelation analysis (see Sect. 6.5.3), the
observations from social media are also aggregated into the same spatial divisions.

Visual Exploratory Analysis of Spatiotemporal Activity and Movement Behavior

The frontend of the system provides several interactive visualization and data filtering
possibilities that enable the visual exploratory analysis of spatial and temporal
phenomena, related to certain social categories. In particular, a user may represent the
collected (and/or uploaded) datasets in the form of dynamic point clusters, intensity
heat maps, OD paths, path routes, choropleths, charts, and graphs based on the issue
at hand. These visual representations can be filtered by data source, social category,
time span, time frame within a day, POI category, age range, and gender type, within
azooming user interface. Each type of visualization is stored in different layers, on top
of the base map, to enable the simultaneous observation and exploration of several
variables. The currently available visualization types and data filters are listed in Table
16.

Here, the focus is on testing the capacities of the SocialGlass components, as regards
the visual exploratory analysis of the activity and movement behavior of people over
space and time, on the basis of the main hypothesis. Drawing on the collected datasets,
described previously, the first step is to choose the data source of interest. The system
is builtin such a way that it allows a user to investigate and compare the same set of
variables from different sources. In the examined case, social activity is approximated
by Twitter and Instagram data, in addition to POI-related information extracted from
Foursquare. Therefore, these are the main sources in focus.

From the implemented visualization tools, heatmaps, choropleths, charts, and
timelines, are used for the exploration of social activity distribution over space

and time, whereas path routes are used for the investigation of flows (i.e. human
movement behavior). In order to test the main hypothesis, the datasets are further
filtered by social category (i.e. residents, non-residents, foreign tourists) and time span
(i.e. before, during, and after the event).

Heatmaps provide an overview of hot and cold spots, respectively signifying locations
of high or low intensity of social activity. The accompanying time sliders, enable
users to study the hourly distribution of activities. In turn, choropleths illustrate this
aspect by aggregating data into the geographic divisions (here, postcode areas) of the
city, assigning a shade in proportion to the intensity of activity (i.e. number of posts
per postcode area). Path routes represent the flows between locations, projected
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on the street network of the city (instead of drawing a straight connector between

the origins and destinations), using different opacity levels to indicate the volume

of movement. Charts and timeline graphs, provide additional information about

the temporal distribution of posts, the daily social activity, and metadata about the
variable in question (e.g. age range, nationalities, popular venues, semantics etc.). The
exploratory results can be exported in Geo]SON format for integration into external GIS
or statistical spatial analysis platforms.

TABLE 16 Visualization types and data filters.

Visualization Types

Variable Function

Path OD path (arc) Creates a network of nodes (POIs) and links (arc edges) to represent the interaction be-
tween origin and destination POIs. Thickness indicates the volume of flows

Path route Creates a network that follows the footprint of streets, indicating the exact route followed
by an individual (or group of people) from one POI location to another. Line thickness and
color density indicate the volume of flows

Choropleth Post Creates a thematic map in which areas are shaded in proportion to the amount of posts.
Time sliders are available in all choropleth maps

POI category Creates a thematic map in which areas are shaded in proportion to the POI category

Individual role Creates a thematic map in which areas are shaded in proportion to the social category (i.e.
residents, non-residents, foreign tourists)

Gender Creates a thematic map in which areas are shaded in proportion to the gender type

Age Creates a thematic map in which areas are shaded in proportion to the age range

Data Filters

Filter Function

Time of day : Filters the selected data according to a time frame within a day

Individual role  Filters the selected data according to a specific social category (i.e. residents, non-resi-
i dents, foreign tourists)

Filters the selected data according to the age range

Text query Filters the selected data according to a set of words included in a post (e.g. a tweet)
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Residents’ activity in the period before (i.e. November 13, 2014 - November 26,
2014) and after the event (i.e. January 19, 2015 - January 31, 2015), as inferred by
both Twitter and Instagram, presents similar patterns of intensity in the heatmap
illustrations. Conversely, the period during the event is characterized by an exponential
increase in the volume of social activity, especially observed in Instagram data.

Despite this dissimilarity, clusters of hot spots tend to gather around the areas of

the city center, regardless the time period and the differences in terms of overall
intensity. However, smaller hot spots also appear in the eastern, southern, and western
outskirts of the city, suggesting a slightly dispersed distribution of activity (Appendix
D, Figures 40 - 47). This only signifies an overall tendency of activity behavior, which
will be specified quantitatively in the spatial autocorrelation analysis, discussed in

the following section. By overlaying heatmaps on top of the corresponding choropleth
visualizations, one may detect the spatial units around which activity tends to cluster,
as well as to have an overview of the degree of dispersion for each social category. A user
can also activate or de-activate as many layers as needed in order to visually explore
the spatial and temporal distribution of different variables. Besides, the accompanying
timelines insight into the daily fluctuation of social activity over the period of study.

Using the same set of visualization tools, the social activity of non-residents presents

a much smaller degree of intensity than that of residents (see Appendix D, Figures

46 - 51). Although in this social category, the volume of activity also becomes larger

in absolute numbers, its spatial distribution gives evidence of a strong cluster around
the areas of the city center. More specifically, almost the entire activity of non-
residents appears to concentrate in the districts of Burgwallen-Nieuwe and Oude Zijde,
Grachtengordel Zuid, Weteringschans, and Nieuwmarkt. In an interesting way, non-
residents appear to collocate in these areas, not only during but also before and after
the ALF event.

Evidence of similar clusters around the aforementioned areas, though of much higher
intensity, is also given for foreign tourists (see Appendix D, Figures 52 - 57). This
activity of this particular social category appears to form agglomerations around POIs
of the city center, though on a much larger scale than non-residents and residents.

Its spatial dispersion is almost negligible. Yet, what specifically diversifies foreign
tourists from the other two social categories, is the fluctuation of activity intensity
over the three main periods of study. The spatial footprint of foreign tourists’ activity
is rather weak in the period before the event, grows exponentially during the event,
and remains sufficiently large in the period after the event, as inferred by both Twitter
and Instagram. An indicative comparison between the social activity patterns of
residents and foreign tourists for the entire period (i.e. November 13, 2014 till January
31, 2015), focusing specifically on their activity dynamics between 6pm and 9pm, is
illustrated in Figure 26.
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[a] ALF - Platform: Instagram | User type: Resident | Time Period: 18-21h
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[b] ALF - Platform: Instagram | User type: Foreign Tourist | Time Period: 18-21h

FIGURE 26 Average activity patterns of (a) residents and (b) foreign tourists for the entire period before, during, and after the ALF
event (between 6pm and 9pm). Residents appear to have a more dispersed activity over space, compared to foreign tourists who
tend to cluster around the central districts of Amsterdam (as inferred from Instagram). Moreover, residents’ activity appears more
balanced throughout the period in focus, whereas in the case of foreign tourists, a steep increase in volume occurs, especially
around the Christmas period.
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The observations on the spatial and temporal distribution of social activity are also
reflected in the movement patterns of the three social categories (Figures 27 - 29). The
routes followed by residents and foreign tourists traverse more neighborhoods than
those of non-residents, yet the strength of residents’ flows is higher (represented in
thicker red lines in the flow maps) and flow lines reach areas much farther than the city
center. Especially with regard to flows and their representation, the zoom function of
the Ul enables users to explore different levels of detail, mitigating the negative effects
of aggregate flow maps, which become easily cluttered.

The visual exploratory analysis of the collected datasets, using a set of visualization
and data filtering tools implemented in SocialGlass, allowed to elucidate how the social
activity of different groups of people is distributed over the geographic space and over
time. With reference to the main hypothesis, it could be inferred that the event has

an influence on the volume of activity, but there exist several dissimilarities between
the social categories. Therefore, the intensity indeed increases, but what has yet to be
tested is whether the spatial distribution of activity in the social categories tends to
agglomerate around similar or different neighborhoods over the three examined time
periods. This requires to extract the collected data, metadata, and results from the
system, to perform further statistical spatial analyses.
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FIGURE 27 Movement trajectories of residents throughout the entire period (i.e. November 13, 2014 - January 31, 2015).
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FIGURE 28 Movement trajectories of non-residents throughout the entire period (i.e. November 13, 2014 - January 31, 2015).
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FIGURE 29 Movement trajectories of foreign tourists throughout the entire period (i.e. November 13, 2014 - January 31, 2015).
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§ 6.5.3 Spatial Autocorrelation Analysis

The visual exploratory analysis of several variables in the system'’s frontend indicated
the existence of spatial and temporal clusters of social activity. It also demonstrated
differences in the agglomeration of activity between the social categories in focus, that
were largely dependent on the time period (i.e. before, during, or after the event). To
further quantify the distribution of social activity over space and time, and to assess
whether and where the activities of different social categories tend to concentrate
around certain areas, a spatial autocorrelation analysis is performed, using the data
collected by SocialGlass. This exploratory spatial data analysis (ESDA) (Bivand, 2010;
Haining, 2003) method is also used to test the main hypothesis, concerning the
degree to which ALF influences the activity behavior of different social categories.
Indices and tests of autocorrelation, as well as local indicators of spatial association
(LISA) are employed to determine potential spatial patterns of similar values in the
examined variables. Moreover, they are used to explore the extent to which these
patterns are significant from a statistical point of view. Such patterns and associations
between values are often difficult to detect in the choropleth or heatmap visualizations,
described in the previous section. This analysis is performed by means of the open-
source R statistical language (R, 2008), using several packages® for spatial analysis
(see also Appendix G).

First, the global Moran's I coefficient (Cliff & Ord, 1973, 1981; Moran, 1950) is used

to identify spatial clusters of high (or low) POI density over the 96 areal units (i.e.
postcode areas) of the city of Amsterdam. The POI records derived from Foursquare are
used as proxies for the entire set of POIs in the city. Subsequently, the Moran I statistic
is applied to the empirical data from Twitter and Instagram, to quantify spatial clusters
and outliers of human activity concentration. It is specifically calculated for 27 variables
(in addition to the POI density variable, making up a total of 28 different variables) -
listed in Table 17 — which reflect the intensity of activity (i.e. number of visits to POIs),
normalized by the total area of each spatial unit. The variables address the three social
categories examined here (i.e. residents, non-residents, and foreign tourists) and
cover different periods of time (i.e. before, during, and after the event). The obtained
I-values are then tested against the null hypothesis of complete spatial randomness
(CSR), that s, the assumption that the variables are completely spatially independent.
These tests assess the likeliness of obtaining I-values that are equal to, or larger than,
the calculated ones, in a hypothetical case of no spatial autocorrelation. Finally, local
indicators of spatial association (LISAs) (Anselin, 1995), and in particular the local

For the purposes of the analysis, the following open-source R-packages are used: GISTools (http://bit.ly/230-
MYKm), spdep (http://bit.ly/ 1SNsnu2), Ictools (http://bit.ly/1UyDgVm), ggplot2 (http://bit.ly/1UyDjAv), rgeos
(http://bit.ly/ IW7kiX5).
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Moran's Ii and the Getis-Ord Gj* statistics, are calculated for each one of the total 28
variables. These local statistical indices provide further indications of significant spatial
clusters of either high or low values around each observation (i.e. areal unit).

§ 6.5.3.1 Global spatial autocorrelation statistics and tests
The commonly used mathematical definition of the global Moran's I coefficient is the
one defined by Cliff and Ord (Cliff & Ord, 1973, 1981), which slightly deviates from
the initial version proposed by Moran (Moran, 1950), and is given by the following
expression:

n T X Wiz — 2) (2 — 2)

1= -
T X Wy Xtz —2)?

(6.4)

Where nis the number of areal units (i.e. observations), z;, z;are the values of a variable
7= {zl, Zy, .., Zj, Zj’ " zn} of interest for two neighboring areas i and j respectively, z

is the mean of the z; values, and W; is a n x n weight matrix, specifying the degree

of dependency between the areal unitsiandj. The I-values liein the [-1, +1] range,
where values close to +1 indicate strong positive autocorrelation (i.e. spatial clusters

of similarly high or low values of the examined variable), values close to -1 indicate
strong negative autocorrelation (i.e. areal units of high z;-values close to districts of low
z;-values), and values close to O indicate the lack of any spatial autocorrelation and,

hence, spatial patterns.

In general, there are several methods for calculating the W;; weight matrix that mostly
rely on the contiguity and (Euclidean) distance between the observations (Fotheringham,
Brunsdon, & Charlton, 2002; Goodchild, 1986; Rogerson, 2010). Here, the weighting
scheme used to compute the W;; matrix is based on a number of k-nearest neighbors,
and the Euclidean distance between the centroids of each postcode area iand j(k)

# 1. Subsequently, the value of the Wij matrix equals to 1, when dj; < H), (where H,
corresponds to the k-nearest distance between i and its k-nearest neighbor j(k)), and

0, when dy; > Hp. This scheme is chosen for its ability to provide a minimum amount

of neighbors for each one of the 96 observations, and especially for the southeastern
areal units of the Amsterdam city region, which are disjoint from the main corpus of the
city. However, in order to assess the sensitivity of the I-values and their corresponding
significance to different weightings of the examined variables, every calculation of the
Tindex is tested for nine different variations of k-nearest neighbors. The different Z
variables, for which the global Moran's I'is computed, in addition to the obtained results
for every k-nearest neighbor variation, are listed in Table 17.
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In order to assess the statistical significance of the obtained global I-values against
the null hypothesis of zero spatial autocorrelation, two statistical inference tests are
carried out. In the first one, the aforementioned hypothesis is further specified to
assume that the distribution of I approximately approaches a Gaussian (i.e. normal)
distribution, as the number of observations increases. Given that the 96 areal units
are considered to represent a sufficiently large number of observations (Cliff & Ord,
1973, 1981; Rogerson, 2010)°?, it can be assumed that each z; isdrawn froma
Gaussian distribution of random Zvariables, so that the sample distribution of I-values
is approximately normal. This particular approach is the resampling hypothesis of I
(Goodchild, 1986), which may be used to determine a test statistic with a score of
significance zy(I) that is given by the following mathematical expression:

I =Ey(D

V(D

ZN(I) = (65)

Where Ey(I) resembles the expected mean of the sampling distribution of I, when

the null hypothesis is true, and is given by EN(I) =-1/(n-1). VN(I) is the variance of the
distribution and the formulas for calculating it are provided in Appendix E. Based on
this score, the probability (p-value) of obtaining a sample I statistic that is equal to, or
larger than, the observed I-values may also be retrieved.

In the second test, the initial null hypothesis is further specified to assume that any
random permutation of z;-values over the entire set of areal units in question is equally
possible. Therefore, instead of presuming a Gaussian distribution of the z;s, each

of the observed I'indices may be assessed in relation to the set of all possible values
that could be derived from the random permutation of all z;s over the geographical
divisions (Fischer & Wang, 2011). This approach is the randomization hypothesis of [
(Goodchild, 1986) and the corresponding zg(I) statistic is given by:

I—Er(D

VVr()

zg(l) = (6.6)

Where, as before, ER(I) =-1/(n-1)is the expected mean value of I, and VR(I), whose
mathematical definitions are also provided in Appendix E, resembles the variance of I
under the randomization hypothesis (Fotheringham et al., 2000).
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Cliff and Ord suggest that the number of observations should be higher than 16, whereas Rogerson suggests
that they should be above 20, in order for them to asymptotically approach a Gaussian distribution.
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From the definition of this hypothesis, if n is the number of areal units, then the
possible permutations of z;-values would be n! or, specifically in the examined case,
96! = 9,917e+149 permutations. As it is virtually impossible to calculate such a large
number of potential I-values, a Monte Carlo simulation is employed instead, which
generates a certain amount of random permutations (here, 10,000 permutations
are carried out). For each one of the simulated permutations, a global Moran’s I'is
computed and tested against the observed I-value drawn from the empirical data, in
order to assess the extent to which it deviates from the null hypothesis. This further
allows to extract the corresponding p-value, which indicates how likely it is to get an
I-value that is equal to, or greater than, the observed one, in the case of complete
spatial randomness (Hope, 1968). For both tests, if the zN(I) orthe zR(I) values are
greater than +1.96 or smaller than -1.96, with a p-value < 0.05 (that is, more than
95% confidence interval), the null hypothesis is rejected and the obtained Moran's
index is considered statistically significant. The computed results osz(I) and zR(I),
along with the corresponding p-values for each one of the examined variables are listed
inTable 17.

TABLE 17 Global Moran's Ivalues of the examined variables, along with the scores of statistical significance for both the resampling
and the randomization hypotheses.

Zvariable Global Moran’s I ZN(I) resampling p-value z,(I) randomiza- p-value random-

resampling t ization

PO density ; ; 6.203¢-12 7.036e-12

7.06%e-20

8.813e-20

4.283e-28 5.889%-23

1.015e-33

1.490e-33

1.50%e-25

Residents’ 0.005
Activity

(Twitter - Entire

period)

1.988e-25

7.984e-06

3.210e-05

| 2.751e-06

4701e-06

- 2.818e-05
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TABLE 17 Global Moran’s Ivalues of the examined variables, along with the scores of statistical significance for both the resampling
and the randomization hypotheses.

Zvariable Global Moran’s I i p-value zP{I) randomiza- p-value random-
resampling tion ization

1 9.271e-05

Residents’
Activity
(Twitter -
13/11/2014-
26/11/2014)

1 0.000e+00

4.105¢-06

- 1.139e-05

£ 0.000e+00
7.676e-06

Residents’
Activity
(Twitter = ALF
Event)

5.151e-05

1 8.881e-06

| 2.602e-05

19.992¢-05
10.000

Residents’
Activity
(Twitter -
19/01/2015-
31/01/2015)

19.823¢-05

8.132e-06

1.696e-06

1 6.750e-06
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TABLE 17 Global Moran's Ivalues of the examined variables, along with the scores of statistical significance for both the resampling
and the randomization hypotheses.

Zvariable Global Moran's I

I) resampling p-value ZR(I) randomiza- p-value random-
resampling tion ization

 4655¢-10

ZN(

Residents’
Activity

(Twitter — Entire
period | 6am -
9am)

6.685¢-09

3.76le-12

5.618¢-10

0.024

Residents’ : 0.000e+00
Activity
(Twitter - Entire
period | 12pm -
15pm)

- 1.045¢-06
3.409¢-08

0.000e+00 8.587e-08

5.866e-05 1.622e-09

- 0.000e+00

7.063e-09

3.052e-07
10.001

0.000e+00

Residents’ 0.010
Activity

(Twitter — Entire

period | 18pm -

21pm)

0.001

Non-Residents’ 1.167e-13
Activity
(Twitter - Entire
period)

10,001
13.932e-18

1.048e-11

1781e-15

4.358e-17

1 8.320e-23

7.813e-17

2.046e-22

1 6.932e-21

6.797¢-16
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TABLE 17 Global Moran’s Ivalues of the examined variables, along with the scores of statistical significance for both the resampling
and the randomization hypotheses.

Zvariable Global Moran’s I i p-value ZP{D randomiza- p-value random-
resampling tion ization

992¢-13 13361e-16

Non-Residents’
Activity

(Twitter -
13/11/2014-
26/11/2014)

1 1.945¢-14

13.332e-20

927e-15 13.095¢-19

.145e-16
.804e-13

7.354e-20
 6.078¢-17

Non-Residents’
Activity
(Twitter = ALF
Event)

| 1.145¢-13

1 1.903e-20

| 1.284e-19

| 1.629%-18
2.862e-17

.52%e-14
146e-13

Non-Residents’
Activity
(Twitter -
19/01/2015-
31/01/2015)

.634e-13

1517e-16

860e-18 5.823e-24

378e-20 5.978¢-26

.252e-16
.025e-15

1 1.381e-20
3.413e-21

Foreign Tourists’
Activity
(Twitter - Entire
period)

| 2.060e-19

.288e-17

1 1.052e-22

7.487e-20

18.020e-14
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TABLE 17 Global Moran's Ivalues of the examined variables, along with the scores of statistical significance for both the resampling
and the randomization hypotheses.

Zvariable 3 Global Moran's I

I) resampling p-value ZR(I) randomiza- p-value random-
resampling tion ization

Foreign Tourists’ 1 1.155e-17 4537e-24
Activity
(Twitter -

13/11/2014-
26/11/2014)

ZN(

9.721e-17

8.699-23

7.680e-20

4.167e-27

3.277e-17 216923

6.748e-11
Foreign Tourists’ - 1.293e-15
Activity
(Twitter — ALF
Event)

1 1.933¢-14
6.216e-21

2.694e-14 13.967e-19

1.216e-16  2.406e-22

- 1.139%-14

1 1.345¢-19

1 6.370e-14
6.717e-18

1.209e-10

Foreign Tourists’ 2.116e-13
Activity
(Twitter -
19/01/2015-
31/01/2015)

6.203e-12

 6.847e-16

1.393e-13 3.769%-18

8.935e-12

1 1.221e-15

6.418e-09

Residents’ 2.305e-19
Activity
(Instagram -
Entire period)

134le-11
| 5.507e-20

1.206e-29

1 1.267-30

6.391e-44

2.144e-45

6.726e-57

8.192e-59

1244e-65

1.449¢-63
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TABLE 17 Global Moran’s Ivalues of the examined variables, along with the scores of statistical significance for both the resampling
and the randomization hypotheses.

Zvariable k  Global Moran'sI i p-value ZP{D randomiza- p-value random-
resampling tion ization

343¢-19 2.708e-19

Residents’
Activity
(Instagram -
13/11/2014-
26/11/2014)

8.522e-30

3.299%-44

266e-54 7.648¢-56

.812e-62
.718e-19

19.170e-64
6.156e-20

Residents’
Activity
(Instagram - ALF
Event)

- 1.806e-30

3.105e-45

4.640e-59

| 2.815¢-65
 4.508e-21

Residents’
Activity
(Instagram -
19/01/2015-
31/01/2015)

13.055¢-30

934e-41 2.517e-43

383e-53 13.277e-55

.296e-62
.924e-17

4.073e-65
1.746e-20

Non-Residents’
Activity
(Instagram -
Entire period)

.352e-17

2317e-21

.542e-26

1 1.071e-31

4.416e-34

£ 5.000e-31

.136e-25
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TABLE 17 Global Moran's Ivalues of the examined variables, along with the scores of statistical significance for both the resampling
and the randomization hypotheses.

Zvariable Global Moran's I

I) resampling p-value ZR(I) randomiza- p-value random-
resampling tion ization

Non-Residents’ 1 4537e-16 1 3.398¢-18
Activity
(Instagram -

13/11/2014-
26/11/2014)

ZN(

2.848e-18

1 1.021e-20

3.217e-26

1 8.159%-30

1.196¢-28 143232

2.374e-32
Non-Residents’ - 1l64le-16
Activity : i
(Instagram - ALF
Event)

1.260e-36
1 3.514e-20

6.329¢-17 - 1.068e-20

13.391e-25 5.639%-31

7.318e-27

1 5.309¢-33

1 1.033e-28
1 1.297e-19

1.348e-23

Non-Residents’ 1.443e-14
Activity
(Instagram -
19/01/2015-
31/01/2015)

3.226e-14

13.893e-19

1.182e-20  4.967e-28

1.668e-23

 6.631e-32

2.23%-19

Foreign Tourists’ 4.924e-16
Activity
(Instagram -
Entire period)

7.102e-26
2.813e-22

6.329-15

- 1.056e-20

6.696e-18

6.096e-25

6.274e-16

4.450e-22

- 1.960e-14

- 1.096e-10
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TABLE 17 Global Moran’s Ivalues of the examined variables, along with the scores of statistical significance for both the resampling
and the randomization hypotheses.

Zvariable k  Global Moran'sI zN(I) resampling

p-value zP{I) randomiza-  p-value random-
\
resampling tion ization

271e-19  4.186e-24

Foreign Tourists’
Activity
(Instagram -
13/11/2014-
26/11/2014)

2.849¢-25

6.174e-34

529¢-28 3.461e-35

| 2.258e-25
4.072e-22

Foreign Tourists’
Activity
(Instagram - ALF
Event)

.289%e-15

1.6934e-20

.244e-17

| 1.348e-24

1.443e-21

4.660e-14
3.867e-22

.105e-10
.575e-14

Foreign Tourists’
Activity
(Instagram -
19/01/2015-
31/01/2015)

| 2.659-19

378e-14 7.340e-22

968e-12 8.882e-19

19.010e-12

.234e-08

§ 6.5.3.2 Results of global spatial autocorrelation analysis
As mentioned previously, the first variable that is examined is the density of POI
locations. The POI dataset comprises 12,198 locations of “third places” (Rosenbaum,
2006), such as restaurants, museums, parks, nightlife spots, cafés, cinemas,
transportation hubs, and other related facilities, extracted from Foursquare.
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Professional places (“second places”) and residences (“first places”) are excluded from
the collected dataset, so as to resemble as much as possible the places where people
are most likely to socialize. Subsequently, the POIs are aggregated into the various
spatial divisions (i.e. postcode areas), and normalized by the total area of the latter, to
obtain the POI density of each areal unit.

The spatial autocorrelation of the POI density levels aims to firstly identify spatial
patterns of neighboring districts with high or low concentration of POI locations and,
secondly, examine whether or not there is a correspondence between POI density

and human social activity. The global Moran's I of POI density for various k-nearest
neighbors (see Table 17) indicates a strong positive spatial autocorrelation. Moreover,
there is sufficient evidence that the obtained I-values are statistically significant, under
both the resampling and the randomization hypothesis, since the respective zy(I) and
ZR(I) scores are rather high (around +10.00 in all tested variations), with a greater than
99.99% confidence interval (p-values << 0.001). In addition, the observed global I
index appears relatively stable, especially within the range of 2 to 9 nearest neighbors.
The aforementioned results indicate the existence of spatial clusters of districts with
similarly high or low values of physical POI density. Therefore, the null hypothesis

of complete spatial randomness with regard to POl density values is rejected. To
specifically identify which of the districts lie in these clusters, LISA statistics are used,
as discussed later in the section and shown in the corresponding cluster maps (see
Appendix F).

Although the above measures identify spatial patterns of areal units where physical

POI locations are either densely or sparsely distributed, they do not reveal anything
about the intensity of activity that takes place in these areas. To quantify spatial and
temporal patterns of high or low social activity intensity, especially around the time
period in focus, the global Moran’s I statistic is calculated for 27 additional variables,
listed in Table 17. The collected data from Twitter and Instagram are used as proxies of
social activity, characterizing different groups of people at various time intervals. The
SocialGlass system enables the identification of three distinct social categories in the
dataset, namely residents, non-residents, and foreign tourists, whose activity patterns
are studied here. In general, the variables are classified into three main sets, each one
resembling the activity of a particular social category. Then, each set is divided into a
subset of variables that represent four different time periods. These respectively refer
to the entire monitoring period (from November 13, 2014 till January 31, 2015), the
weeks before the ALF event (November 13, 2014 - November 26, 2014), the ALF event
period (November 27, 2014 - January 18, 2015), and the weeks after the event (January
18,2015 - January 31, 2015). Each of the aforementioned variables corresponds to
social activity intensity, as inferred from either Twitter or Instagram. There is also an
additional set of three variables that reflects the aggregated activity of residents at
different time intervals within a day - respectively from 6am to 9am, from 12pm to
15pm, and from 18pm to 21pm - over the entire monitoring period, as inferred from
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Twitter. As with the POI locations, the collected geo-referenced posts are aggregated
into the postcode areas, and normalized by the total area of each spatial unit, in order to
provide a social activity intensity rate for each geographic division in focus.

The obtained global Moran's Ivalues that correspond to the intensity of social activity
of residents on Twitter indicate weak positive spatial autocorrelation, accompanied

by relatively low values of statistical significance, regardless the time period. These
results suggest that residents do not cluster significantly in particular regions of the
city when they socialize, but instead their activity is quite dispersed or random over
the entire city region. This was also evident in the visual exploratory analysis of activity
heatmaps, discussed in Sect. 6.5.2. On the contrary, the I-values of their activity on
Instagram signify very strong positive spatial autocorrelation (e.g. values larger than
+0.7 for k=6 nearest neighbors), which additionally yield high z-scores and confidence
levels. This particular contradiction may derive from the different nature of the social
media platforms in question. People tend to use each platform differently, to express,
communicate, and share certain aspects of their daily lives. Apparently, this variance in
the usage is reflected on the data values too. A semantic analysis on the corresponding
posts would presumably yield insight into the nature of this discrepancy, yet it has

not been carried out in the present study. However, what is particularly interesting, is
that, regardless the data source, the values of the I statistic remain relatively stable -
according to the sensitivity analysis using different weights - irrespective of the time
period. This signifies that the activity behavior of the residents is not influenced by the
event, which is in contrast to the main hypothesis. This would be tested further at the
district level with the use of local indicators.

As regards the non-residents, the observed I-values suggest strong deviation from
the random distribution. In other words, this particular social category appears to
systematically form spatial patterns of activity behavior, reflected in both Twitter and
Instagram data. In fact, the spatial autocorrelation of their activity yields almost equal
positive values of high statistical significance, irrespective of the time period and

data source. This also contradicts the initial hypothesis that the event would cause an
increase in the intensity of activity. Moreover, it further contradicts the assumption that
the event would have an effect on the activity behavior of all social categories. Already
at this stage, substantial differences are detected between the social categories, in
terms of activity behavior over space and time, yet these appear to be independent of
the event.

Lastly, the activity of foreign tourists also appears to be organized around clusters of
either high or low values of intensity rates. Strong positive autocorrelation is detected
in both Twitter and Instagram data. Although, in general, the I-values remain relatively
stable over the different time periods, it appears that the detected clusters are stronger
prior to the event, with a tendency to become slightly weaker in the two remaining time
periods that are studied here.
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In total, the obtained results from the global autocorrelation analysis have shown

that the social categories of non-residents and foreign tourists have a tendency to
agglomerate around certain districts of the city. Unlike the group of residents, these
two groups are more likely to collocate over space and time. For the moment, the event
has almost negligible effects on the activity behavior of the three social categories,
which could indicate that each group is characterized by quite regular activity patterns
over time. However, the measures that have been carried out thus far reflect the entire
city region. To further identify which specific areal units contribute strongly to the
spatial clusters or outliers detected at the global level, a local autocorrelation analysis is
performed and discussed in the following sections.

§ 6.5.3.3 Local spatial association statistics and tests
The local autocorrelation analysis is based on indicators, in particular, local indicators
of spatial association (LISAs) (Anselin, 1995) that spatially decompose the global ones.
This spatial decomposition enables the identification of localized phenomena (clusters
or outliers) in each areal unit under consideration that further allow to assess which
particular observations contribute most strongly to the patterns detected in the overall
results. Instead of providing a general indication about whether autocorrelation occurs,
LISAs assign to each data value of an areal unit a local measure that signifies where
there is strong - or weak - clustering of similar values around that spatial unit. In other
words, they allow to correlate the values of a chosen variable at each geographical
division or location with the average value of the same variable at certain k-nearest
neighboring locations. The results obtained from the local autocorrelation analysis give
evidence of potential local clusters of either high (else called hot spots) or low values (or
cold spots). In addition, they give a quantifiable indication of the extent to which any
association occurs.

In the context of this study, LISAs are used to, first, identify which particular spatial
units contribute most strongly to the clustering of POI-dense districts, detected

in the global analysis, and to assess the extent and spatial distribution of these
patterns. Second, they are applied to the various social activity variables to detect the
corresponding spatial footprints of human activity patterns that characterize each
social category over time. This would eventually allow to assess whether or not there is
a relationship between dense POI locations and intense social activity rates. It would
further enable to understand the spatial impact of the event on the social activity
patterns of people.

To this end, the local version of the Moran’s I'index, in combination with the Getis-
Ord Gi* statistic are employed. The local Moran I; statistic is given by the following
expression:
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zi—Z = .
= W;ilzy —Z) , J#Ii (6.7)
i 1/n2?:1(zi_7)2; l](] )

The notation is similar to the global I'index, givenin Eq. (6.4). The weight matrix W;; is
calculated in the same way as for the global Moran’s I, based on the Euclidean distance
between an areal unit i and the k-nearest j neighbor. Although the interpretation of
the local ; statistic is similar to the global one, the range of values of the former does
not lie within the [-1, +1] range of the global index. Accordingly, the significance of the
obtained I;-values can be assessed against the corresponding z(I;)-scores of a random
permutation test, under a null hypothesis of no spatial association, given by the
following (Anselin, 1995):

I; — Eg (1)

VVR()

zg(ly) = (6.8)

The mathematical definitions of the expected mean ER(I,‘) and the variance VR(I;‘) are
provided in Appendix E. With regard to the corresponding p-values, obtained from the
above test, and in order to mitigate the risk of acquiring "false-positive results” (i.e.
significant I;-values in areas where the null hypothesis of no spatial autocorrelation
isin fact true) they are adjusted according to the False Discovery Rate (FDR) test,
introduced by (Benjamini & Hochberg, 1995). The test results are illustrated in the
FDR choropleths, included in Appendix F.

In addition to the local index, the Getis-Ord Gi* statistic (Getis & Ord, 1992; Ord &
Getis, 1995) is calculated for each -value of the set of Zvariables under consideration
(see Table 17). Unlike the local Moran's Ii which indicates the existence of spatial
clusters characterized by similar values, the Getis-Ord statistic can further detect local
spatial units that comprise either high or low values of the variable in question. Here,
the calculation of the local Gi*index employs the updated definition of the statistic,
described in (Ord & Getis, 1995), and given by:

T Wi (d)z; — 2 X7, Wi;(d)

) jnz;;lwg(d) - (5, Wy @] (©9)

Gi(d) =

n—1

Where z: resembles the value of the variable Z at a location (or spatial unit) j, which is
a neighboring areal unit to i, Zis the sample mean of Z, s is its standard deviation, and
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W,-j(d) represents the weight matrix, specifying the degree of dependency between

the areal units i and j within a distance d. Ifd,-» < dthen W,-»(d) =1, otherwise W,-j(d)

= 0, where d;; is the distance between the centroids of the spatial unitsiand j. The
combination of both the local Moran’s I;and the Getis-Ord G,-* allows the identification
of spatially homogeneous or heterogeneous patterns of human activity, that are further
characterized by agglomerations of significant positive or negative Gi*-values.

§ 6.5.3.4 Findings of local spatial association analysis - Identifying
local spatial clusters of social activity over time
The global autocorrelation analysis of the POI density over the various spatial units of
Amsterdam has revealed that there exist significant clusters of neighboring districts,
where POl locations tend to agglomerate or be dispersed (strong positive overall
autocorrelation). Yet, it has not identified which are the particular spatial units that
largely contribute to the overall outcome. For this, the local autocorrelation analysis
results, in relation to POl density, suggest a prominent pattern of high I; z-scores
(high with high values — HH) at the central and southern parts of the city, forming
a single cluster of districts®® (see Appendix F, Figure 58). On the contrary, areas
at the north-western (Waterland), north (Kadoelen), north-eastern (Weestelijk
Havengebied, Spieringerhorn, De Eendracht), and south-eastern outskirts (Bijimer
Centrum, Bullewijk, Holendrecht etc.) form clusters of low Ij-values (low with low
values - LL), yet with significant z-scores. The spatially homogeneous pattern at the
central and southern parts signifies that areas of high POI density tend to concentrate
into a single region of the city. The dominance of this region is further confirmed by
the corresponding G]-* statistic. According to the Getis-Ord cluster map (see Appendix
F, Figure 58), the HH I; units also yield significant G,-*-values, with more than 99%
confidence interval (p-values < 0.01, using a Monte Carlo simulation with 10,000
permutations). This means that areas with high POI density in the city of Amsterdam
are closer together than areas with low POI density. What remains, is to examine
whether or not these clusters are related to patterns of areas with high social activity
intensity. Also, to examine whether or not different patterns of spatial association, in
terms of social activity intensity, appear before, during, and after the ALF event.

60 The districts that comprise the cluster are namely: Hoofddorppleinbuurt, Westlandgracht, Westindische buurt,
Willemspark, Overtoomse Sluis, Schinkelbuurt, Apollobuurt, Scheldebuurt, Nieuwe Pijp, Oude Pijp, Duivelsei-
land, IJsselbuurt, Weteringschans, Weesperzijde, Transvaalbuurt, and Frankenbuurt.
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The Moran scatterplot of residents’ activity (see Appendix F, Figure 59)¢ as

inferred from Twitter for the entire period in question, generally suggests a positive
autocorrelation. More specifically, areas where local I; z-scores are below average, tend
to cluster with neighboring districts that have equally low average values (lower-left
quadrant of the scatterplot). There are only a few high activity areas that cluster with
other high activity neighboring districts (upper-right quadrant). These districts are
the ones that contribute strongly to the global result, which indeed indicated a weak
positive spatial autocorrelation. Looking at the resulting cluster map, it appears that
the social activity of residents clusters around the central train station, at the northern
part of Amsterdam (Figure 30). Conversely, the corresponding activity inferred from
Instagram generates a wider and dominant cluster of areas with high z-scores, covering
the central districts of the city (Figure 31). The different time periods examined here,
show minor variations in the pattern formation for both Twitter and Instagram activity.
Moreover, the local autocorrelation analysis of the aggregate daily activity in different
time frames (i.e. 6am - 9am; 12pm - 15pm; 18pm - 21pm) also indicates minor
fluctuations in the structure of clusters (see Appendix F, Figure 67). Yet, a variance

is detected in terms of the significance of the obtained values, as observed in the
respective scatterplots. Especially regarding the intensity of activity from 6am to 9am,
the resulting z-scores accumulate either in HH or LL regions. This implies the existence
of certain dominant activity hubs (HH regions, around the central station), where
residents tend to co-locate, resulting in a contrasting pattern between highly vibrant
and ratheridle neighborhoods.

Although the neighborhoods belonging to the HH I; z-score regions — which are also
characterized by significant Gi* values (see Appendix F, Figures 65 - 66) - coincide
with the areas where ALF installations are mostly gathered, it appears that the activity
clusters are not so much related to the event, as almost the same patterns occur in the
periods before and after ALF. What is interesting, though, is that the high activity hubs
barely relate to those characterized by high POI density. This could imply - at least for
the case of Amsterdam - that a high number of POI venues in a neighborhood is not
necessarily linked to equally intense social activity.

As regards the activity of both non-residents and foreign tourists, the local
autocorrelation outcomes suggest almost identical patterns of either HH or LL regions
(Figures 30 - 31). Unlike residents, whose activity appears more dispersed, non-
residents and foreign tourists tend to strongly co-locate around the city center. For
both social categories, the neighborhoods that contribute significantly to the strong
positive autocorrelation, observed in the global analysis results, gather around the
central station and cover the neighborhood comprising Amsterdam'’s city center.

The entire set of Moran scatterplots, choropleths of local Moran’s I.-values, and the corresponding cluster maps
of Moran'’s Ii and Getis-Ord Gi*-statistics areincluded in Appendix F.
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Although, in absolute numbers, the intensity of activity (i.e. the number of posts per
POI) during the event is higher than the period before or after ALF - especially for
tourists - it appears that it always tends to concentrate around the aforementioned
districts, throughout the three-month period. This spatially homogeneous pattern of
social activity, observed in the local autocorrelation results, is further strengthened by
the high G]-* values, characterizing the areas within the aforementioned cluster (see
Appendix F, Figures 59 - 66).

Overall, both global and local autocorrelation analyses suggest non-random
distribution of the activity behavior of the three social categories in question. This
further indicates that the spatial manifestation of social activity, in the examined case,
is characterized by a tendency to concentrate around specific areas of the city. However,
the distribution of social activity over space and time demonstrates different patterns,
according to the group of people it relates to. Residents’ activity behavior appears more
dispersed than the one of non-residents and foreign tourists. This was also observed
initially in the visual exploratory analysis of spatiotemporal activity patterns (see Sect.
6.5.2), provided by the system’s frontend. Yet, the spatial autocorrelation analysis
further allowed to quantify and assess the extent of these clusters for each social
category.

With regard to the main hypothesis, where it was assumed that the event would
influence the overall activity behavior of all social categories especially in the areas
around the event's installations, the analysis gives evidence to reject it. Although the
volume of activity increases in absolute numbers for some social categories (i.e. foreign
tourists and non-residents) during the event, the spatial footprint of activity behavior
of each group presents only slight differences before, during, and after the event. In the
city of Amsterdam, regardless the social category, areas characterized by high activity
tend to form spatially homogeneous clusters, which - in this case - are observed
around the central train station. In turn, the geographic extent and strength of these
clusters depends on the social category in focus, and gives and indication of the areas
where people belonging to different groups are more likely to co-locate. In either way,
intense social activity tends to agglomerate around approximately 8-10 districts
surrounding the central train station. This spatially concentrated distribution of social
activity around a single region, is an indication of a dominant monocentric urban
structure, both functionally and morphologically.
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FIGURE 30 Local Moran's I cluster maps of social activity, referring to different social categories of people during different time
periods, as inferred from Twitter. Red-colored districts indicate clusters of neighboring areas with high values of social activity.
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FIGURE 31 Local Moran's I cluster maps of social activity, referring to different social categories of people during different time
periods, as inferred from Instagram.
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This Chapterintroduced a web-based system (SocialGlass) that enables the
visualization and exploratory analysis of dynamic urban phenomena related to

social activity and human movement, by integrating heterogeneous data sources. It
presented the features and functionality of the various components and modules,
comprising the overall system architecture, and discussed the strategy employed to
infer attributes of social agents and their activity behavior in cities from the datasets it
incorporates. To demonstrate how these can be put to use in understanding the spatial
distribution of social activity over time, a select number of the tools were implemented
in a real-world case study. The latter involved the investigation of the potential
influence a city-scale event may have on the everyday activity and mobility patterns of
different social categories. Along with these exploratory goals, the case study is also
used as a means to assess the capacities and limitations of the implemented system.
The following reflections concern both the system and the study findings, and highlight
the potential flaws of the chosen data sources, methods, approximations, and software
development strategies.

With regard to the data sources, SocialGlass primarily operates with data from LBSNs
(e.g. Foursquare) and geo-enabled online social networks (e.g. Twitter, Instagram, Sina
Weibo), as proxies for social activity and human movement. Although it incorporates
other sources such as census and socio-economic records, and also provides tools

that allow custom (spatial) data to be uploaded to the system, the majority of built-

in modules engage with aspects related to data from social media. On the one hand,
that is because these particular data sources have only recently been used in urban
analytics; much less than authoritative census data and CDRs. On the other hand, they
are the most challenging sources in terms of ambiguity, semantic uncertainty, lack of
structure, as well as limited and often unbalanced representativeness (see also Chapter
2). Many of the attributes discussed in this Chapter (e.g. home location, age range,
gender, ethnicity, sentiments etc.) are not readily extractable from the raw data. This
explains why there is an entire pipeline between data collection and availability in the
frontend, with all the aforementioned attributes already approximated and provided to
the end-user. At the same time, though, the entire range of interim processes is prone
to the aforementioned limitations of human-generated data.

One of these limitations pertains to the representativeness of the sample, in terms of
both individuals and POIs. Although the system identifies the amount of individual
users that correspond to the total number of collected posts, and classifies them
according to their home location, age range, gender, and ethnicity, it is difficult to
cross-validate these attributes against a more reliable source, such as census data.
The reason is that the attributes are in fact approximated and, therefore, no concrete
measures can be made as to how representative they are of the population they refer
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to. Similarly, POIs and their corresponding categories are extracted from Foursquare
and, as such, only resemble a sample of the actual POI locations in a given city.
Publicly-available data of functions at the level of individual buildings are generally
scarce. An alternative source to correlate with, that is widely used in urban studies, is
OpenStreetMap. Yet again, OSM is a VGI source that is also characterized by a degree
of bias (Goodchild & Li, 2012). Presumably, the larger the penetration rate of social
media technologies, the larger the amount of users and the corresponding sample, but
how representative it is, is an issue to be studied further.

Another related issue is the untrustworthiness that generally characterizes human-
generated data, which may affect the conclusions one could reach. One way to mitigate
this problem is by employing crowd-sourcing or human computation techniques to
carry out on-demand service requests to social media users for data cleansing and
linkage. This is one of the main directions for future improvement of the system.

In addition, ontology-based data integration methods (see Chapter 3) and tools
(see Chapter 4) are currently being implemented in the semantic enrichment and
integration component. In this way, a larger amount of (semantic) links could be
established between the various datasets that are collected by or uploaded to the
system. There is also room for improvement as regards the development of modules
that integrate the potential interpersonal relationships between the users identified
in the collected datasets (as derived from their online contacts) into the map-based
frontend, as suggested by (Andris, 2016). This addition could largely benefit the
understanding of human activity behavior over space and time.

The empirical validation of an instance of SocialGlass in the case study offers further
insights into both the functionality of the system and the dynamics of social activity in
cities. In particular, the datasets that were used in the study, in combination with the
attributes that were extracted by the system’s modules, enabled the exploration of the
spatial and temporal organization of social activities over much shorter time scales (e.g.
daily, hourly etc.) than it is possible with traditional urban data. Moreover, they allowed
for disaggregation into different social categories, providing information that is hardly
available in official records. The results of both the visual exploratory analysis using the
system’s frontend and the spatial autocorrelation analysis suggest that different groups
of people make different use of urban space over time. Therefore, in studying the
behavior and distribution of human activity, using aggregate populations that ignore
internal diversities may largely affect the observations that could be made. Also, the
data collection period plays a crucial role. The example examined here indicates that
large-scale public events may influence the intensity of social activity and, presumably,
the routine of human movement. The reflection of such fluctuations in the collected
datasets could cause several anomalies that need to be taken into account in similar
studies. Discrepancies were also detected between the data sources used. To a certain
degree and for some social categories (e.g. the residents), Twitter data reflect different
values of activity intensity from those inferred from Instagram. The ability of the system
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tointegrate heterogeneous sources and to also accommodate their diversity (e.g.
identification of different social categories instead of considering aggregate uniform
populations, use of different social media platforms etc.) proves beneficial in this
regard. It also helps mitigate biases in the interpretation of the obtained results. In

addition, the multiple types of visualization and data filters provide many opportunities

to examine several variables in parallel.

What is still lacking, though, are modules for data analysis. As demonstrated in the
case study, only the visual exploratory analysis is carried out using the system’s
frontend. To perform additional statistical analysis on the findings, external platforms
are employed (here, the R statistical language). Moreover, the system does not
introduce new social or spatial statistics, but does implement select metrics and
methods for attribute extraction, described in Chapter 5, so as to infer attributes of
individuals and their activity behavior.

In studying the dynamics of human activity in cities SocialGlass can be employed

to create new experiments, define the data collection period and the area of study,
invoke data crawling from different social media, upload custom datasets, extract
related attributes, visualize and filter the collected datasets, perform interactive visual
exploratory analysis, and export the results for integration into other specialized tools
for further analysis. Therefore, SocialGlass can be used in combination with other
software platforms to gain detailed insights into urban dynamics.
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Discussion and Conclusions

The study of dynamic social and spatial phenomena in cities has evolved rapidly in the
recent years, yielding new insights into the notion of “urban dynamics”, as being first
introduced by (Forrester, 1969). Although the term initially focused on the growth
and economic interactions in urban systems, it currently also encompasses human
mobility, flows of individuals and goods, and the distribution of social activity over
space and time, among others. This evolution is strongly related to the concurrent
emergence of data sources, which have potential to capture dimensions of social and
geographic systems that are difficult to detect in traditional urban data (e.g. census
data). The majority of datasets that are generated from these new sources (e.g.
sensors, mobile phones, social media etc.) are spatially and temporally disaggregated,
addressing short time intervals and individual locations of places and social agents.
This particular characteristic further signifies their main novelty in comparison with
conventional data for cities.

At the same time, as the available data sources increase in number, the produced
datasets increase in diversity. Although the current capabilities of computing systems
allow the storage, processing, analysis, and visualization of large-scale data, integration
remains a challenge. Even though advances have been made in other scientific fields
(e.g. computational biology, medicine, artificial intelligence etc.), the domains of urban
geography, planning, and spatial analysis have limited contribution, in this regard.

In tackling the multifarious social, economic, and environmental challenges of rapid
urbanization, planners and policy makers need supporting frameworks to capitalize on
the new possibilities given by emerging sources of social urban data. This calls for new
methods, tools, and theories to decipher the potential and limitations of these sources,
to enable their integration, and to potentially improve the understanding of complex
urban dynamics. This thesis makes a step towards this goal.

The thesis proposes a framework of methods and tools for the integration,
visualization, and exploratory analysis of large-scale heterogeneous urban data

with spatial and temporal attributes, so as to contribute to the current research on
urban dynamics. In the first place, it introduces the concept of ‘social urban data’

to describe the spatiotemporal datasets that originate from emerging sources (e.g.
sensors, mobile phones, geo-enabled social media, and LBSNs) and have potential to
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represent aspects of social and spatial networks in cities, but are also characterized by
semantic ambiguity. After defining their distinguishing characteristics and identifying
their strengths and weaknesses (Chapter 2), the data integration component of the
proposed framework is introduced (Chapter 3). This comprises a methodology for the
semantic integration of (social) urban data from heterogeneous sources and their
transformation into multidimensional linked urban data. Following an ontology-
based approach to data integration, in addition to adopting Semantic Web and Linked
Data technologies, the methodology is specifically oriented to the domain of urban
analytics and aims to counter the lack of domain-specific guidelines for generating and
publishing Linked Data (Radulovic et al., 2015; Villazén-Terrazas et al., 2012; Villazén-
Terrazas etal., 2011). An implementation of this methodology is also demonstrated
with a comprehensive example of data transformation into LOD, concerning a large-
scale dataset about the entire public transportation system of Athens, Greece. In
facilitating the semantic interoperability between social urban data, a domain ontology
of public transportation systems (Chapter 3) and an upper-level ontology of urban
networks (Chapter 4) are also developed. To support the adoption of the methodology
by planners and policy makers, the framework additionally comprises a set of web-
based tools for the visual exploration of ontologies and linked urban data, supported
by interactive user interfaces (Chapter 4). The attributes that can be sourced from
emerging social urban data are then used as proxies to estimate socio-demographic
variables of individuals (e.g. home location, age range, gender etc.), aspects of human
movement (e.g. radius of gyration, flows on the road network), and social activity (e.g.
POl visits, activity spaces, activity-related semantics and sentiments etc.). Therefore,
a set of methods is introduced to source this information from various social urban
data. The derived attributes are used to enrich measurements of functional density
and diversity with disaggregate human activity attributes (Chapter 5). Finally, the
proposed framework is complemented by a web-based system that is developed to
accommodate and combine the methods introduced in the thesis under a single
platform. It comprises a set of components and modules that specifically enable the
visualization and exploratory analysis of human activity and movement patternsin
space and time, and also support the integration of traditional and emerging social
urban data from multiple sources. An instance of the platformis also put to use in
understanding the spatial distribution of activity and movement patterns of different
social categories before, during, and after a city-scale event in the city of Amsterdam
(Chapter 6).

In the remainder of this Chapter, the findings of the research are, first, discussed

by revisiting the research questions formulated in Chapter 1. Next, the limitations

of the research are highlighted and classified into four main categories. Following
this, Sect. 7.3 presents the overall conclusions by first answering the main research
question, followed by a summary of the major findings. Afterwards, it presents
potential applications to practice and research and, finally, concludes with pointers to
future research.
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This section discusses the major findings of the research, arranged according to the
various research questions formulated in the Introduction (Chapter 1).

What are the characteristics that distinguish emerging social urban data from
traditional ones?

In Chapter 2, traditional data for cities are juxtaposed with data deriving from emerging
sources (i.e. sensors, mobile phones, geo-enabled social media, and LBSNs), based

on eight characteristics to elicit what distinguishes the latter from the former. These
characteristics are namely: diversity, scale, timeliness, structure, spatiotemporal
resolution, semantic expressiveness, representativeness, and veracity. Unlike existing
literature that assigns some of these attributes only to large-scale (or 'big’) data

(e.g. (Boyd & Crawford, 2012; Kitchin, 2014a; Mayer-Schonberger & Cukier, 2013;
Zikopoulos et al., 2012), itis argued here that the eight aforementioned characteristics
arein factinherent to all types of datasets, regardless the source. The difference lies

in the extent to which each of the characteristics typifies a certain data type or source.
Therefore, the eight characteristics described in Chapter 2 serve as a framework to
assess the strengths and weaknesses of each source, either traditional or emerging,
against each feature.

Current literature elaborates primarily on generic definitions and characteristics,
classifying new data sources under the - also generic - 'Big Data’ umbrella, which lacks
distinct context. Arguing that this term is insufficient to describe the specificities of
data sources about cities, the research introduces the term ‘social urban data’ instead.
The latter encompasses the data that (a) are generated either directly from people
orindirectly from people’s actions, (b) derive from sources such as sensors, mobile
phones, geo-enabled social media, and LBSNs, (c) are multidimensional in nature,
meaning that they are spatially and temporally referenced, and as such (d) they can

be used to infer spatial, temporal, and social aspects of human movement, activity,
and social connectivity, at the disaggregate level, (e) but are less structured and more
semantically ambiguous than traditional urban data.

However, social urban data should not be regarded as a unified category of data. In

fact, there exist several differences within and between the sources producing social
urban data. As itis discussed in Chapter 2, and shown in the case examples in Chapters
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3 and 6, according to the source that generates them, social urban data may have
varied levels of structure, semantic expressiveness, spatiotemporal resolution, and also
represent different population samples. For instance, the amount of geo-referenced
data on Twitter is generally smaller than the corresponding one on Instagram. At the
same time, different usage patterns in different cities (or countries) drastically affect
the sample of data that can be sourced. In some cases, (e.g. in China) none of the

two aforementioned social media can be used as proxies to infer aspects of urban
dynamics, since the penetration rate is negligible. Instead, one should seek alternative
sources (e.g. Weibo, in the case of Chinese cities) that make their data available
through APIs. Similarly, the penetration rates of mobile phone providers, as well as
the density of devices in a sensor network arrangement, have a strong influence on the
representativeness of the obtained sample. This also explains why putting everything
under the generic umbrella of ‘Big Data’ can be rather misleading, especially when it
comes to understanding their implications.

In answering the above research question, the most distinguishing characteristic

that differentiates emerging social urban data in general from traditional ones, is

the purpose guiding their generation. Conventional data about cities (e.g. data from
censuses, household travel surveys etc.) are generated ad hoc, i.e. to serve a specific
purpose, which in turn drives the sampling frame, the data model, the associated
meta-data, the frequency of updates, and the resolution. This subsequently results in
high quality data, characterized by clean structure and high levels of trustworthiness
in regards to the information included. On the contrary, the majority of social urban
data are generated spontaneously, without a particular data model, while the purpose
they serve may vary substantially. This generally results in muddled data structures and
ambiguous semantics, which in turn lead to lower quality data compared to traditional
ones. This explains why data from emerging sources are not directly applicable to
urban analytics, but instead require intermediate processing in order for aspects of
individuals or urban environments to be derived or inferred (e.g. home location, age
and gender estimation, travel or migration trajectories, social networks, type of activity
etc.), as described in Chapters 5 and 6.

Overall, the present-day urban data landscape is characterized by a large diversity

of sources, compared to previous periods. In addition, the frequent update rates

of emerging data sources allow the analysis of shorter time intervals than it was
possible hitherto. At the same time, though, the lack of structure and the ambiguity
of accompanying semantics still constitute major challenges in taking full advantage
of the capacity of new sources of urban data. The suitability of each source - or set

of sources - to be used in the study of urban dynamics, primarily depends on the
context of the case in question. In general, traditional urban data are characterized
by high levels of structure, semantic expressiveness, representativeness, and veracity,
but are weakerin terms of update frequency (timeliness) and spatiotemporal
resolution. Sensor data are updated frequently, are highly structured, have high levels
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of spatiotemporal resolution and veracity, and may vary substantially, based on the
aspect they measure. However, they have almost negligible semantic information
associated with them, while their representativeness depends on the coverage and
density of devices comprising a sensor network. The same applies to mobile phone
data (or CDRs), with the exception of diversity, since data records usually comein
standard file formats (e.g. tabular data in csv, xml, json or similar formats) (e.g.
(Calabrese, Smoreda, et al.,, 2011; Grauwin et al., 2015; Wang et al., 2015). Finally,
data from geo-enabled social media (e.g. Twitter, Instagram, Sina Weibo etc.) and
LBSNs (e.g. Foursquare) also have frequent update rates, usually high spatiotemporal
resolution and semantic expressiveness, but are very weak in terms of structure,
representativeness, and veracity.

How to transform heterogeneous data for cities into multidimensional linked
urban data?

One of the major challenges in exploring complex aspects of urban systems is

the integration of data deriving from multiple and diverse sources. Although the
combination of various types of data could be valuable in filling in missing (values

of) attributes, as well as in mitigating the weaknesses of one source by leveraging the
strengths of another, the heterogeneities in data format, schema, structure, resolution,
naming conventions, and level of aggregation raise several issues. In answering

this challenge, a methodology for the semantic integration and transformation of
heterogeneous urban data into multidimensional linked urban data is designed in
Chapter 3. The methodology follows an ontology-based data integration approach and
accommodates a variety of semantic (web) and linked data technologies. Overall, the
methodology comprises three main processes, i.e. semantic integration, linked data
generation, and publication to the LOD cloud, with each one consisting of several sub-
processes, as follows:

— Semanticintegration:
— Selection of data sources and data preprocessing
— Data analysis and modeling
— Schema extraction
— Resource naming strategy definition
— Ontology design and development
Terms extraction

Reuse of existing ontologies and external structured vocabularies

Terms hierarchy and ontology conceptualization
Ontology evaluation

— Mapping source data to the ontology (data transformation)
— Transformation into multidimensional linked urban data:

— Establishing links with other sources
— Publication to the LOD cloud:
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— Ontology and RDF dataset publication on the Web
— Documentation accessibility (human-readable and machine-processable)
— Registration into a Linked Data catalog and publication to the LOD cloud

Each one of the three main processes comprising the methodology resembles a
different level of data openness, reusability, reproducibility, connectivity, and retrieval.
In particular, the semantic integration process addresses the fusion of local data that
can be either open or proprietary. In the linked data generation (data transformation)
process, the integrated dataset that has resulted from the previous step, can be linked
with datasets from other sources. Yet again, the obtained linked data can be either
open or proprietary (i.e. exploited only within a certain group of stakeholders). On the
contrary, the publication process to the LOD cloud is only applicable to linked open data
that can be publicly retrieved, reused, republished, transformed, connected further
with other datasets, and be exploited in various applications. Therefore, the degree of
openness, reproducibility, and reusability scales linearly from one process to another.

This methodology can be replicated with relatively low effort and be applied (with
minor adjustments) to different types of urban data, irrespective of the chosen sources.
Moreover, the fact that it is based on ontologies enables the semi-automatic iteration
of the data mapping for any future updates of the source data, provided that the latter
maintain their initial schemas. This can be beneficial for contemporary social urban
data, which are characterized by very frequent update rates. Besides minimizing data
redundancy and ensuring semantic interoperability, ontologies can also be used as

a basis for querying and retrieving the resulting linked datasets, e.g. from SPARQL
endpoints. Although part of the methodology draws on generic methods for generating
and publishing LOD, such as the one proposed by (Heath & Bizer, 2011a), itis
specifically developed to cater to the domain of urban analytics.

A comprehensive example of urban data integration, transformation into
multidimensional linked urban data, and publication to the LOD cloud is also
presented in Chapter 3 to demonstrate the applicability of the methodology to large-
scale spatiotemporal urban data from different sources. To support the interoperability
between the data in question (i.e. regarding the entire public transport network of

the city of Athens), a domain-specific ontology of public transportation systems
(ROUTE Ontology) is also developed. The ontology can be used in the integration and
linked data generation processes of similar data from the transportation and mobility
domains. Although the example makes use of mostly authoritative data, rather than
social urban data (anissue thatis further discussed in Sect. 7.2.2, later in this chapter),
the demonstrated methodology for data integration and transformation into LOD can
be adjusted to serve data from emerging sources as well. This replicable methodology
can potentially facilitate the generation and publication of LOD in the domains of urban
geography, planning, and analytics, which are currently very scarcely represented on the
LOD cloud, compared to other scientific domains.
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How could urban planners, researchers and policy makers leverage the potential of
multidimensional linked data in city analytics?

Although the methodology that is introduced in Chapter 3 provides a means to fuse
data and information from multiple sources, it requires one to be familiar with the
formalisms of ontologies and other semantic technologies. However, this is rarely
the case with policy makers, urban planners, and researchers alike. The answer to the
above question is covered in Chapter 4, where a set of web-based tools (the OSMoSys
framework) for the visual representation of ontologies and multidimensional linked
urban data is designed and demonstrated through benchmark cases. Having in mind
that policy makers, urban planners, and researchers will increasingly be facing the need
tointegrate multidimensional data into urban models, they will also progressively
come into contact with ontologies and linked data. Acknowledging this necessity, the
proposed computational tools provide graphical user interfaces, in combination with
navigational aids for browsing though and filtering interlinked data and knowledge
models (i.e. ontologies), without requiring previous experience with the technologies
involved. Unlike related examples (e.g. (S. M. Falconer et al., 2010; Heim et al.,
2009; Stuhretal., 2011) that depend on specialized software or require installation,
the proposed tools are fully accessible through the Web and rely on open-source
technology.

The OSMoSys set of tools uses force-directed graphs to visualize linked datasets and
their underlying ontologies. Nodes represent the data instances, whereas links (or
edges) represent the relationships between them. As data instances may correspond
to any real-world entity (e.g. a city, a district, a POI, an individual etc.), the interactive
graph representation enables the visual exploration of relationships between instances
of different dimensions (i.e. spatial, social, temporal). For instance, a pair of social
contacts (e.g. derived from a social media platform or inferred from mobile phone
data), with each individual being an instance of the foaf:Agent class, could be linked
with a specific POI location (i.e. an instance of the osmosys:PointOfInterest class) in
a city (e.g. derived from GeoNames), and be further linked with a type of activity at a
certain time frame, in the same graph.

It was found, though, that such multidimensional networks can easily become
muddled as the number of nodes and links increases. To increase the readability and
exploration potential, the proposed tools incorporate functions such as varied node
sizes based on a node’s centrality (i.e. the amount of instances it connects with),

node clustering, semantic zooming, grouping (e.g. based on feature type), keyword
search, and isolated views of local graphs (i.e. comprising only the nodes that a data
instance is directly linked to). Besides the graph visualization, the proposed framework
also provides a web ontology browser to browse through the components of an
ontology that is uploaded to the system. This particular feature is not provided in the
visualization of linked data.
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The proposed tools can also be used by domain experts as a basis to evaluate
ontologies - generally created by ontology experts who do not possess the expertise of
the domain that is represented in the model - during the various development stages.
In addition, they supplement the data integration methodology presented in Chapter 3
with visual means that deviate from the formalisms of semantic technologies.

What types of attributes can be derived from social urban data in relation to the
dynamics of human activity?

The answer to this question is mainly covered in Chapter 5, where a set of methods and
techniques are described, pertinent to the extraction of socio-demographic attributes
of individuals, functional attributes of places, individual spatial movement patterns,
and topical attributes of human activity from social urban data. The chapter also
addresses how these approximated attributes help measure the functional density
and diversity of urban areas, as well as the geographical extents of activity spaces over
different periods of time. A part of the answer is also covered in Chapter 6, where it is
demonstrated how these methods and techniques can be integrated into a software
platform for urban analytics and implemented in the study of human activity patterns
in a real-world case study.

The types of attributes that can be derived from a variety of social urban data sources
pertain to: the home location of an individual, socio-demographic features such as
gender, age range, and ethnicity, individual trajectories and activity spaces, land uses
of POls, as well as topics and sentiments about a certain type of activity. As stated,
these attributes are in fact approximations of the actual ones and, therefore, cannot be
considered fully accurate. The level of accuracy, as well as the type of attribute that can
be derived, largely depend on the source and the quality of data that are generated.

From the above-mentioned attributes, data from sensors (e.g. GPS trackers) can

only be used to derive individual trajectories. Therefore, they can facilitate the
understanding of human movement at the disaggregate level, but are ineffective as
regards the dynamics of social activity. Conversely, one can derive the approximate
home location, the trajectory, and activity space of an individual or a group of people
from mobile phone data (e.g. CDRs). Mapping phone activity (e.g. a call or SMS) to a
certain POI location is possible by triangulating the closest cell phone towers, yet this
estimation can be highly ambiguous. Moreover, due to the negligible semantics that
accompany such datasets, it is difficult to make any estimate on the type of activity that
is carried out or the demographics of the sample in question.

The sources that can be employed to derive the entire set of the above-mentioned
attributes are data from geo-enabled social media and LBSNs. Their accuracy is lower
compared to sensor data and CDRs, yet they outperform all other sources of social
urban data in terms of semantic richness. For this reason, they can valuable proxies for
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the spatial distribution of social activity patterns, as it is demonstrated in Chapter 6.
However, the accuracy (and representativeness) varies from one social media platform
to another. Also, especially in relation to the approximation of land uses, the obtained
observations are limited by the set of POIs that are listed in these platforms (e.g.
Foursquare) and their aggregation into predefined categories. Additional limitations
with regard to the approximation of socio-demographic attributes, topical semantics,
and sentiments are further discussed in Sect. 7.2.2. It is, therefore, suggested that (if
available) multiple social urban data sources are combined together - using also the
data integration methods that are presented in Chapter 3 - and cross-validated against
reliable sources of urban data (e.g. censuses, surveys).

The incorporation of these attributes into urban analytics helps deviate from traditional
approaches, in which people and places are usually perceived as aggregate (i.e. average,
mean, or summed values) parameters within spatial subdivisions (e.g. census tracts).

How do different sources of social urban data influence the understanding of the
spatiotemporal dynamics of human activity in cities?

Afterintroducing methods and tools for data integration (Chapter 3), visual exploration
of linked spatiotemporal data (Chapter 4), and derivation of various attributes of people
and places from different social urban data (Chapter 5), it is examined how they can all
be combined into a single platform and put to use in understanding spatiotemporal
patterns of human activity in cities. In particular, Chapter 6 presents a novel web-based
system (SocialGlass) that enables this combination and further allows to explore how
different social categories of people use urban space over time, using their online social
activity as proxy. The system combines data from various geo-enabled social media
and LBSNs (i.e. Twitter, Instagram, Sina Weibo, Foursquare), sensor networks (i.e. GPS
trackers, Wi-Fi cameras), and conventional socio-economic urban records, but also has
the potential to employ custom datasets from other sources. The previously discussed
methods for data integration and approximation of attributes are implemented in
several modules of the system architecture and support the frontend GUIL. The latter
further accommodates a variety of visualization types and data filters to support the
visual exploratory analysis of human activity in cities.

Areal-world case study is also analyzed and used as a demonstrator of the capacities
of the proposed web-based system in the study of urban dynamics (Chapter 6). The
case study explores the potential impact of a city-scale event (i.e. the Amsterdam Light
festival 2015) on the activity and movement patterns of different social categories

(i.e. residents, non-residents, foreign tourists), as compared to their daily and hourly
routines in the periods before and after the event. Besides assessing the deployment
of the system in a real-world use case, the aim of this empirical exploration was also to
evaluate the knowledge gained from different sources of social urban data, as regards
the dynamics of human activity.
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By analyzing 28 different variables, derived from different geo-enabled social media,
through both visual exploratory analysis (using the SocialGlass GUI) and - global and
local - spatial autocorrelation analysis, it is found that different social categories of
people use urban space differently over time. In particular, residents’ activity behavior
- asinferred from their online social activity - appears more dispersed than the one of
non-residents and foreign tourists, who tend to concentrate around specific districts.
This is evident in the results of both visual exploratory and spatial autocorrelation
analyses. Anotherinteresting finding is that although the volume of activity for

some social categories (i.e. foreign tourists and non-residents) increases in absolute
numbers during the event, the spatial footprint of activity behavior of each group
presents only slight differences over time. The observations on the spatial and temporal
distribution of social activity are also reflected in the movement patterns of the three
social categories in question (as inferred from the SocialGlass system). The trajectories
followed by residents and foreign tourists traverse more neighborhoods than those of
non-residents. Yet, the volume of resident flows is larger and their trajectories cover

a wider area compared to the other social categories. The overall findings suggest

that the event had an impact on the intensity of activity of non-residents and foreign
tourists, but had almost no effect on its spatial distribution over time. Moreover, the
local spatial autocorrelation analysis revealed that - in the case of Amsterdam - the
places were activity tends to concentrate, irrespective of the social category, do not
coincide with the places that are characterized by high density of POI locations.

Overall, the above findings suggest that it is necessary to consider different social
categories, rather than aggregate populations, when studying the dynamics of human
activity and mobility behavior in cities. Moreover, the data collection period and the
data source play a crucial role, when it comes to anomalies that could be reflected in
the collected data. In Sect. 6.5.2 - 6.5.4, it was shown that the consideration of a single
source (e.g. Twitter or Instagram) could yield entirely different outcomes and, hence,
biased interpretation of the result. Therefore, the ability of the system to integrate

data from heterogeneous sources, along with the multiple visualization types and

data filters it provides, prove beneficial in the spatiotemporal exploration of human
activity in cities. Although this research presents a single case study regarding the city
of Amsterdam, the platform has already been tested successfully for similar purposes
(i.e. urban dynamics, with a focus on spatiotemporal human activity and movement
behavior) in several cities worldwide, i.e. London, Milan, Paris, Rome (Psyllidis et al.,
2015a); Como (Psyllidis, Bozzon, Bocconi, & Bolivar, 2015b); Rotterdam, Shenzhen
(Gong, Bozzon, Psyllidis, & Yang, 2016); Boston, Jakarta, Singapore, Sydney, and Zurich
(Psyllidis, Bozzon, Yang, & Mesbah, 2016 (in press)).
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Limitations of the Research

The thesis has introduced a variety of new computational methods and tools to
address the research challenge, objectives, and questions, and has further employed
data from a range of emerging sources that have only recently been considered in
urban analytics. As explicitly stated in this research, emerging social urban data suffer
from several ambiguities at - among others - the semantic, structural, and sampling
level. These ambiguities lead to several biases that could be reflected in the tools and
methods and, subsequently, affect the interpretation of the results. Other assumptions
made throughout the various stages of research may also have similar effects in

the findings. This section highlights these limitations and classifies them into the
following categories: limitations of social urban data as proxies for the analysis of urban
dynamics, limitations of data integration and interlinkage methods, limitations of the
proposed tools, and ethics and privacy.

Limitations of social urban data as proxies for the analysis of urban dynamics

The use of emerging sources such as sensors, mobile phones, geo-enabled social
media and LBSNs in the analysis of urban dynamics is associated with issues of data
quality and representativeness. Quality is primarily affected by the context in which
these types of data are produced. The context in turn impacts the level of precision and
the semantics that accompany these data, which in turn influence the interpretation
of the results. In the history of spatial analysis, geography, and urban and regional
studies, it is the first time that researchers gradually employ data from sources that are
designed to serve different purposes (e.g. to socialize on the Web, to promote one’s
work, to call contacts etc.) than the ones for which they are used (i.e. urban analytics).
Moreover, one has almost no control on the way these data are generated. In mitigating
the resulting data 'noise’, data ‘cleaning’ processes are usually applied. Yet the
decisions on what to include and what to omit from the analysis also carries some bias
(Boyd & Crawford, 2012). This limitation also applies to this research, where various
assumptions are made, especially in the attributes (e.g. home location, age range,
gender, ethnicity etc.) derived from the social media data (Chapters 5 and 6).

Another limitation is related to sampling biases, which are pertinent not only to this
research, but also to relevant studies using these emerging sources. This particular
issue is crucial for assessing the representativeness of the considered datasets. In

the case of sensor data, the sample of observations is generally dependent on the
coverage of the sensor network in focus. However, it is almost impossible to make any
assumptions about the demographics of the sample (with the exception of camera-
generated data, but this raises issues of privacy). Therefore, the obtained observations
cannot be disaggregated by age, gender, or any other socio-economic attribute,
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meaning that only questions about how an activity is performed can be addressed,
rather than who performs this activity. In the case of mobile phone data (e.g. CDRs),
the representativeness of the sample depends on the penetration of the various mobile
phone providers and the extent of the dataset they are willing to provide. However, it is
generally difficult to identify the actual amount of unique users within the dataset, as
one person may own more than one phone number with the same provider. As is the
case with sensor data, it is also difficult to infer any socio-demographic characteristics
of the population represented in the sample.

This research primarily employs data from geo-enabled social media and LBSNs.
Mobile phone and sensor data are not used in the case studies, since the former are
proprietary and the latter require extensive resources in sensing devices. Therefore,
the datasets used here are limited to only those that are publicly available and can

be retrieved from each platform’s API (i.e. Twitter, Instagram, and Foursquare APIs).
Moreover, the collected sample is also affected by the limits imposed by each API,
which may relate to restrictions in terms of the amount of data that can be derived. For
instance, in the case of Twitter, the publicly available feed provided by the steaming
APIis used instead of the proprietary ‘firehose’. This subsequently limits the collected
sample to only 1% of the entire set of public tweets, out of which only the geo-
referenced posts are selected. However, it has been shown by (Morstatter et al., 2013)
that the streaming API returns almost the entire set of geo-tagged posts within a
predefined bounding box. In regards to the latter (i.e. the predefined area within which
oneis allowed to retrieved geo-referenced posts), the Twitter API allows large areas to
be covered at once. Instead of a bounding box, the APIs of Instagram and Sina Weibo
require a center point to be defined first, along with a radius for the spatial query, which
should not exceed 5,000m and 11,132m, respectively. This means that in order for
larger regions to be covered, multiple circles need to be drawn. However, the areas

at the intersection of circles contain several duplicates that first have to be filtered

out, prior to being analyzed. The Foursquare API allows data to be retrieved from a
predefined grid. As the API returns at most 50 records (i.e. POI venues) per grid cell,
the size of latter needs to be small enough, so that less than 50 records are returned in
each spatial query (therefore capturing all available POIs).

In addition to the bounding boxes, API requests based on keywords or hashtags could
also carry some bias, in terms of the representativeness of the sample (Malik, Lamba,
Nakos, & Pfeffer, 2015; Olteanu et al., 2015). Most importantly, the changing policies
governing the amount of data that one is allowed to retrieve from a social media API,
can largely affect the collected sample and, therefore, the results drawn from it. During
the course of this research, Twitter, Instagram, and Foursquare API policies have
undergone several changes, especially in regards to the geo-reference of posts, which
plays a crucial role in the issues covered by this study.
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The demographics of the collected sample may also vary from one platform to

another. Members of certain social categories (e.g. white young males) may be over-
represented, while others (e.g. people over 65 years of age) could resemble only a small
portion of the collected sample (Hargittai, 2007; Mislove et al., 2011). Other factors
that could affect the representativeness of the collected data pertain to the penetration
rate of a platform (e.g. Twitter, Instagram, and Foursquare are not used in China),

the usage patterns, and cultural biases (e.g. in terms of content-sharing behavior,
interpretation of content semantics etc.). In Chapter 6, it was shown that temporal
biases could also exist in the collected datasets (e.g. difference in activity patterns
between weekdays and weekends, during public holidays/celebrations or city-scale
events etc.). Overall, in using social urban data - especially those generated from

social media platforms - to analyze the dynamics of human activity, it is necessary to
consider that the online social activity generally represents a sample of the actual one
(Miller & Goodchild, 2014). However, as reliable data about the actual activity behavior
of people are scarcely available, it is often difficult to measure and evaluate the extent
to which online social data are representative of reality.

Limitations of data integration and interlinkage methods

The major limitation of the data integration and interlinkage methods that were mainly
presented in Chapter 3, is that they require familiarity with semantic (web) and linked
data technologies, as well as with concepts and processes of ontology engineering. To

a certain extent, thisissue could be mitigated with the tools that were introduced in
Chapter 4, yet the latter are primarily focused on visualization, rather than on ontology
design and linked data generation. More specialized services and tools are needed to
further simplify these processes and, hence, increase the adoption levels of ontology-
based data integration and interlinkage technologies by urban planning researchers
and policy makers.

Regarding the source data, a limitation that was also encountered in the process of
collecting appropriate ones for the use case, pertains to the legal terms that accompany
the data to be fused and linked. Although city organizations increasingly publish urban
data as open data, there are currently only a few examples where the licenses clearly
specify whether or not they can be further processed, republished, and reused in
different applications. As regards social urban data, there also exist several aspects that
could hinder their publication as LOD. In particular, anonymization techniques (e.g.
generalization, aggregation, suppression etc.) need to be applied prior to publishing
CDRs or social media data as linked data, so that both explicit (e.g. user names, phone
numbers etc.) and quasi (e.g. place of residence, date of birth, ethnicity etc.) identifiers
are excluded and privacy is preserved. In fact, certain types of social data, such as CDRs,
can only be linked with other datasets at the local level, instead of being published to the
LOD cloud, given the sensitive information they contain and their proprietary nature.
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In regards to the LOD cloud, although there is currently an abundance of generic
datasets, domain-specific linked data are still poorly represented. At present, data
pertinent to human movement behavior, social activity in cities, flows between urban
systems, among others that are relevant to this research have negligible presence on
the LOD cloud. For this reason, in the example presented in Chapter 3 the total amount
of links that were established is relatively limited (i.e. 16,080 in total), compared

to the average amount of LOD cloud links (about 35% of the existing LOD datasets
contain more than 20,000 links (Schmachtenberg et al., 2014)). The adoption of the
methodology presented in Chapter 3 would hopefully facilitate the generation of linked
data that cover the aforementioned aspects of urban dynamics, so that further links
can be established between them and to the already existing linked geospatial data
(e.g. GeoNames and Linked Geo Data).

Limitations of the proposed tools

The main tools proposed by this research are the OSMoSys framework for web-based
ontology visualization and exploration of linked urban data (Chapter 4), and the
SocialGlass web-based system for the visualization and exploratory analysis of human
activity dynamics in cities (Chapter 6).

As regards the OSMoSys framework, the current implementation does not provide
editing or graph manipulation functions (e.g. reallocation of the graph nodes, node
size customization, edge adjustment etc.). Although the RDF and OWL visualizer
component is based on graph visualization, it does not accommodate network metrics
(e.g. node centrality, degree distribution, betweenness etc.). Instead, external software
platforms - such as Gephi (Bastian, Heymann, & Jacomy, 2009) - can be used, in this
regard. Moreover, the placement of the nodes (i.e. classes orinstances of a class) on
the graph does not correspond to an actual geo-location in a continuous Cartesian
space, like in GIS - although some nodes may be accompanied by spatial coordinates
- butinstead follows an a-spatial approach, similar to social network representations.
Usability tests with stakeholders (e.g. urban planners, researchers, and policy makers)
will be necessary in the future to evaluate the comprehensibility and applicability of the
proposed framework of tools.

As part of the OSMoSys framework, Chapter 4 also introduced an upper-level ontology
of urban networks, to facilitate the semantic integration of frequently used data in
urban analytics. Although the ontology has been successfully tested for semantic
consistency and conciseness (see Sect. 4.3.4.5), additional tests on completeness

- ideally with urban planners and policy makers - have to be performed, as part of
future work. At present, the ontology supports only English terms. In future versions,
descriptions in other languages could also be incorporated, so that non-English urban
data instances can be mapped to it.

Revisiting Urban Dynamics through Social Urban Data



241

In regards to the SocialGlass system, the main limitation pertains to methodological
aspects of data processing (i.e. data collection, cleaning, filtering) designed to retrieve
orinfer attributes (e.g. home location, age range, gender etc.) primarily from social
media data. The inherent biases characterizing these data, as discussed earlier in this

section, play a crucial role in the interpretation of the obtained observations. In general,

itis necessary to cross-validate the inferred attributes against more reliable sources,

such as census data, yet relevant information is not always available at the disaggregate

level. In relation to the currently implemented modules, there is also room for
improvement as regards the integration of inferred interpersonal relationships (i.e.
online contacts) into the map-based GUI. Moreover, the incorporation of modules
for spatial statistics would largely benefit the platform. As is the case with OSMoSys,
usability tests with city planning and policy stakeholders are an important part of the
future agenda, in order to further evaluate the comprehensibility and applicability of
the system.

Ethics and privacy

In this research, large-scale datasets from a variety of sources have been used to
address the main objectives and challenges. In addition, several methods and tools
have been designed and implemented with the aim to facilitate researchers and
practitioners to combine different data sources in order to understand aspects of

human dynamics in cities. This inevitably leads to a discussion about ethics and privacy

preservation, with regard to the technologies and data involved.

The entire set of tools that have been developed for the purposes of this research use
solely open source software, are provided under open licenses, and can be accessed
through commonly-used web browsers. To further encourage accessibility and
reproducibility, special care has been taken in terms of making their documentation
publicly available (see e.g. Sect. 3.3.5.1; 3.3.5.2; 4.3.1; 4.3.4.4; 6.4.1). In addition, the
datasets that have been used throughout this research are publicly available and either
derive from publicly accessible web-based governmental repositories (see Sect. 3.3.1)
or public APIs (see Sect. 6.5.1). The published version of the ROUTE linked dataset on
the LOD cloud, used in the example presented in Chapter 3, also complies with the
legal terms and licenses of the original data sources (see Sect. 3.3.1; 3.3.5.1). The
aforementioned actions aim to ensure increased transparency and accessibility with
respect to the proposed tools and methods.

However, the employment and analysis of social urban data that contain several
attributes about individuals and their behavior at the disaggregate level may generally
put privacy at risk. The integration of these data with conventional ones could also
make the preservation of sensitive personal information more vulnerable. Besides
explicit identifiers, such as a person’s full name, cell phone number, and home
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address, among others, social urban data may also contain quasi identifiers (e.g.
ethnicity, gender, date of birth, social contacts, place of work etc.) that can indirectly
reveal personal information of a user. On the other hand, the perception of privacy may
vary depending on the time period, culture, social category, and age (Enserink & Chin,
2015; Janssen & van den Hoven, 2015). Therefore, it is difficult to determine exactly
what is considered sensitive information by each person. Yet, as social urban data

- due to their nature and size - are collected without the consent of each individual
involved, itis important that certain security measures are taken prior to analyzing the
collected datasets.

In this research, anonymization procedures have been applied to ensure that
information pertinent to explicit and quasi identifiers about individuals has been
removed. Alternative techniques may include generalization (e.g. using ranges instead
of exact feature values), aggregation (e.g. by social category, by weekday etc.), or
anatomization (i.e. disassociation of quasi identifiers from explicit ones).

Having discussed the research findings and answers to the research questions, this
section presents the overall conclusions by first answering the main research question,
followed by a summary of the major findings (aligned with each research question).
Afterwards, it presents potential applications to practice and research and, finally,
concludes with pointers to future research.

Overall Conclusions

The increasing availability of data for cities that are generated by emerging sources,
such as sensor networks, mobile phones, geo-enabled social media, and LBSNs

have the potential to provide new insights into urban dynamics, but also create new
challenges for urban planners, researchers, and policy makers. These data are mainly
characterized by heterogeneity, owing to the variety of sources and the diversity of
purposes they serve, and multidimensionality, meaning that the information they
contain may simultaneously address spatial, social, temporal, and topical features
of people and places. In addition, they offer new perspectives on how complex socio-
spatial phenomena in cities change over shorter time intervals, compared to the
sparsely updated conventional urban data. On the downside, though, is the muddled
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data structure, the ambiguous semantics of the contained information, and the several
biases (of contextual, demographic, cultural, geographic, technological, or other
nature). The integration of emerging data sources with traditional ones into urban
analytics to extract richer descriptions of city dynamics remains a challenge.

This challenge subsequently led to the main question of this research, which was:

“How to integrate heterogeneous and multidimensional social urban data into the
analysis of human activity dynamics in cities?”

As an answer to the above question, this research proposes a framework of methods
and tools for the integration, visualization, and exploratory analysis of large-scale social
urban data from multiple sources to facilitate the analysis of human activity dynamics
in cities. In particular, the framework comprises a set of methods for the collection

of data, mainly from geo-enabled social media and LBSNs (Chapters 5 and 6), the
integration and interlinkage of spatiotemporal urban data and their transformation
into multidimensional linked urban data (Chapter 3), the extraction of socio-spatial
attributes (Chapter 5), and their incorporation into existing and new measurements
for human movement and functional diversity (Chapter 5). Moreover, the framework
introduces new web-based tools that implement these methods and facilitate the
exploitation of linked urban data by city stakeholders (Chapter 4), as well as enable
the interactive visualization and exploratory analysis of human activity patterns, by
combining emerging with traditional urban data (Chapter 6). Additional contributions
of the research in support of the answer to the main question include an ontology of
urban transportation entities (Sect. 3.3.2.3), an ontology of urban networks (Sect.
4.3.4), and a publicly available linked dataset of the entire public transport network

of Athens, Greece (Sect. 3.3). The ontologies and dataset can be used to inform
transportation and mobility models (for the analysis and simulation of urban mobility
and human movement behavior), and to semantically annotate and integrate data
pertinent to the different networks comprising cities (e.g. street network, transport
network, social networks etc.). The various tools and methods proposed by this
research can also be used independently and can be further adapted to serve other
types of social urban data (e.g. CDRs) and explore relevant aspects of urban dynamics
that were not elaborated in this thesis (e.g. human movement, socio-spatial diversity of
cities in space and time etc.).

In addressing the main challenge, the research was divided into five steps, each one
corresponding to a sub-question, the findings of which were previously discussed in
Sect. 7.2.1. Each of the findings contributed to the answer of the main question. The

following paragraphs summarize the major findings of the five steps/sub-questions:

— Social urban data do not comprise a unified category of data with common
characteristics. According to the source that generates them, they may be characterized
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by varied levels of structural clarity, scale, timeliness, semantic expressiveness,
spatiotemporal resolution, veracity, and representativeness (in terms of the population
they address and in relation to actual features of the urban environment they
represent). Yet, the most distinguishing characteristic that differentiates emerging
social urban data from traditional ones, is the purpose guiding their generation. Unlike
conventional urban data, they are not produced ad hoc and, as such, they contain
contextual, technological, geographical, demographic, and cultural biases, which in
turn affect the overall data quality. In using social urban data as proxies for the analysis
of urban dynamics, the identification of these biases is of critical importance to the
interpretation of the obtained results. Therefore, traditional data processing methods
are not sufficient to extract meaningful knowledge from emerging social urban data.
To leverage the intrinsic biases of social urban data and to extract unambiguous
knowledge about the dynamics of cities, the integration of data from multiple sources
is deemed necessary. Cross-validation against more reliable sources of urban data (e.g.
census records) is also recommended (RQ1 - Chapter 2).

In mitigating the various heterogeneities, a methodology for the transformation of
heterogeneous data for cities into multidimensional linked urban data is designed. The
methodology follows an ontology-based data integration approach and accommodates
a variety of semantic (web) and linked data technologies. The transformation of
heterogeneous data for cities into multidimensional linked urban data has potential

to provide richer descriptions of urban dynamics. Moreover, their publication to the
LOD cloud facilitates their discovery and exploitation by stakeholders of different (city)
domains. The methodology can be replicated and adapted to serve different types of
(social) urban data, irrespective of the chosen sources. As it is based on ontologies, it
also enables the semi-automatic iteration of the data mapping for any future updates
of the source data, provided that the latter maintain their initial schemas (RQ2 -
Chapter 3).

To further facilitate the adoption of linked data by urban planners, researchers, and
policy makers, and encourage them to consume multidimensional linked urban data

in urban analytics, a set of web-based tools (OSMoSys) for the visual representation

of ontologies and linked data is designed and developed. The tools provide graphical
user interfaces, in combination with navigational aids for browsing though and filtering
interlinked data and knowledge models, without requiring previous experience with
the technologies involved. The proposed tools can also be used by domain experts as a
basis to evaluate ontologies during the various development stages (RQ3 - Chapter 4).

Besides multidimensional linked urban data, it is also possible to derive several
attributes of people and places from different geo-enabled social media content and
LBSN data. To extract these attributes, a set of methods and techniques are described.
In general, socio-demographic attributes of individuals, functional attributes of places,
individual spatial movement patterns, and topical attributes of human activity are
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possible to be derived from social media content. The incorporation of these attributes
into urban analytics helps deviate from traditional approaches, in which people

and places are usually perceived as aggregate uniform parameters within spatial
subdivisions (RQ4 - Chapter 5).

The aforementioned methods are combined and incorporated into a novel web-based
system (SocialGlass) to facilitate the exploration of human activity dynamics in cities,
using both traditional and emerging social urban data. The system accommodates a
variety of visualization types and data filters to support the visual exploratory analysis
of the spatiotemporal dynamics of human activity. A real-world case study is also
analyzed and used as a demonstrator of the capacities of the proposed web-based
system, and as a basis for investigating the influence of different data sources on the
understanding of human activity in cities. The findings of the case study suggested that
itis necessary to consider different social categories of people, rather than aggregate
populations, when studying the dynamics of human activity and movement behavior.
Moreover, if social urban data - especially online social media - are used as proxies for
the analysis of urban dynamics, the data collection period and the data source play a
crucial role, when it comes to anomalies that could be reflected in the collected data,
which could in turn lead to biased interpretations (RQ5 - Chapter 6).

Applications to Practice

The methods and tools of the proposed framework could be used in their entirety or
independently in urban planning and policy making. Practitioners in these fields are
expected to be increasingly encountered with a growing amount of urban data from

a variety of sources in the near future, as these become available to a wider audience
of stakeholders. Conventional methods of data processing, analysis, and modeling
could prove insufficient in handling the heterogeneity and multidimensionality of
the emerging urban data sources. Given the increasing urbanization rates worldwide,
the efficient understanding and measurement of the dynamics of urban systems, in
terms of inter- and intra-urban flows of people and goods, urban mobility and human
movement behavior, and the distribution of social activity over space and time at

the disaggregate level is essential to the management of planning of livable urban
environments. The computational methods and tools presented in this research can be
useful in this regard.

In particular, the proposed data integration and interlinkage methodology (Chapter
3) and linked data visualization tools (Chapter 4) can facilitate policy makers to bring
together and combine data from a variety of sources or city sectors, semantically
annotate ambiguous data to provide richer descriptions of urban systems and
activities, understand the links between the components comprising cities, and to
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transform implicit information of spatiotemporal urban data into knowledge about
city dynamics. The ROUTE linked dataset (Sect. 3.3) is an example of how authoritative
data sources from different public organizations can be fused and linked to external
datasets from other domains. Also, the OSMoSys ontology of urban networks (Sect.
4.3.4) could help establish links between data that individually describe different
components of urban systems (e.g. transportation, housing, economy, social networks
etc.). Given that sources such as sensors, mobile phones, geo-enabled social media,
and LBSNs have been scarcely used in policy making and planning, it is important that
the several biases characterizing these sources are identified and addressed at the early
stages of analysis, prior to selecting the data sources to be used. The discussion of the
inherent characteristics of emerging social urban data sources, presented in Chapter 2,
could give furtherinsights into the various potential and limitations they bring to urban
analytics.

In the initial exploration of urban dynamics, policy makers and planners could also
benefit from the interactive visual exploratory analysis tools provided by the SocialGlass
system, presented in Chapter 6. In particular, they could use the system to (a) create
new experiments, (b) define the data collection period and the area of study, (c) invoke
data crawling from different social media platforms, (d) upload custom datasets,

(e) extract data attributes, (f) visualize and filter the collected datasets, (g) perform
interactive visual exploratory analysis of human activity and mobility dynamics, and
(h) export the results for integration into other specialized tools for further analysis.
Finally, the methods to derive attributes from social urban data at the disaggregate
level (Chapter 5), also implemented in the SocialGlass system (Chapter 6), could be
used to inform planning support systems (PSS), decision support systems (DSS), or
spatial microsimulation models.

Applications to Research

The adaptability of the methods and tools comprising the proposed framework
enables them to serve scientific fields beyond urban science and spatial analysis,
such as computational social science, urban geography, GIScience, and (human)
mobility studies. There is already a wealth of research on the laws governing human
trajectories and their configuration over space and time, using empirical data from
GPS trackers and mobile phones (i.e. CDRs). The tools and methods presented here
could further benefit this area of research, especially in terms of data integration to
enable correlations between e.g. (human) mobility, social networks, land uses, and
housing prices. Unlike human mobility studies, there still exists little research on the
dynamics of human activity in cities and the relationship between social networks
and geographic space. The methods for data interlinkage (Chapters 3 and 4), as well
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as for the extraction of attributes from social urban data (Chapter 5), in combination
with the SocialGlass system (Chapter 6) could be useful in this regard. Another
potential application to research is the characterization of urban districts, based on the
behavioral patterns of individuals over space and time. The semantic (topic-based) and
sentiment analysis of social activity data, based on the corresponding modules of the
SocialGlass system, could offer new dimensions to the characterization of urban space.

Besides enabling correlations between various components of the urban environment,
the data integration methodology (Chapter 3) could also support the addition of value
to the interpretation of the collected data. Moreover, it could assist in generating and
publishing new linked datasets to the LOD cloud that are specifically oriented to how
urban systems function. In this way, the current misrepresentation of such data on
the LOD cloud could be substantially mitigated and researchers could benefit from
datasets that are of higher quality than the original ones. The availability of linked
data that are site-specific - as is the case with the ROUTE dataset, presented in Sect.
3.3 - could essentially facilitate the comparative study of disparate urban systems. In
the near future, it is expected that longitudinal disaggregate data, derived from the
continuous collection and storage of (near) real-time social urban data, will inform
urban simulation and prediction models at an unprecedented level of detail.

Future Research

This section provides a set of pointers to future research that extend the scope,
objectives, and findings of this thesis.

Comparative assessment of emerging and traditional sources of urban data

One of the objectives of this research was to explore and identify the characteristics
that distinguish social urban data from traditional ones, and to understand their
strengths and weaknesses as sources for the analysis of urban dynamics. Chapter 2
presented and discussed eight characteristics that are inherent to both emerging and
traditional urban data in general, but argued that the degree to which each one of them
typifies a certain data type is fully depended on the source in question. An important
extension to this would be to operationalize the extent to which these characteristics
are inherent to each data type and potentially identify new ones. This would
subsequently provide quantifiable measurements of the strengths and weaknesses of
social urban data as sources for city analytics. These measurements would be based
on the collection of various empirical urban data from both emerging and traditional
sources and on cross-check analysis of their attributes, in relation to aspects of the
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urban environment (e.g. spatial and temporal distribution of human activities, inter-
and intra-urban flows of people and goods, social fragmentation etc.).

Data integration

As an application of the proposed methodology for data integration and interlinkage
(Chapter 3), this research demonstrated a comprehensive example of linked data
generation and publication, concerning a large-scale spatiotemporal dataset (i.e. the
ROUTE linked dataset). The source data of the use case derived from three different
public transportation organizations. Drawing on the adaptability of the proposed
methods, future research could be focused on applying the methodology to the
generation of linked data from emerging sources, such as geo-enabled social media,
LBSNs, and mobile phones, with the requirement that legal compliance is ensured.
Links could then be established to traditional sources of urban data (e.g. census,
real-estate records, travel surveys etc.) to provide richer descriptions of the urban
environment and its dynamics. Of particular interest would be the creation of links
between data about human social networks and spatial data, to better understand the
extent to which social relationships are affected by the physical structure of cities. The
OSMoSys ontology of urban networks, presented in Sect. 4.3.4, could be useful in this
regard and can be further extended with additional concepts (i.e. classes, subclasses,
and relationships) derived from empirical data.

Multidimensional models of urban dynamics

This research has introduced a set of methods and tools to extract socio-demographic
attributes from disaggregate social urban data (Chapters 5 and 6). These attributes
could be used to define new metrics that simultaneously address the two main
components of urban systems, i.e. built infrastructure and social networks, and their
evolution over time. Moreover, the analysis of multilayer networks (Boccaletti et al.,
2014)in the context of complex systems such as cities, is a topic that deserves further
research. This approach would allow to exploit the wealth of research in both social and
spatial networks analysis; areas that are usually studied separately from one another.
By combining spatial properties of social networks with social attributes of physical
space, future research could focus on the development of coupled urban models that
simultaneously address multiple aspects of urban dynamics. Examples could include
multidimensional models of human movement and social connectivity, activity
patterns and social ties, transport flows and information flows, among others. Data
fusion would be of significant importance in the development of such models.
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Comparative studies of urban systems using the developed computational tools

This research resulted in a framework for the study of urban dynamics which, among
others, provides computational tools that facilitate the integration, visualization, and
exploration of large-scale social urban data from multiple sources (i.e. SocialGlass

and OSMoSys). The spatial distribution and temporal evolution of activity patterns

of different social categories of people, as inferred from online social activity, have

also been explored in a real-world case study, concerning the city of Amsterdam. In
testing the generalization of the findings and the adaptability of the tools, additional
comparative studies of urban dynamics across several urban systems, in both
developed and developing countries, are deemed necessary. As previously mentioned,
these studies could be focused on the coupling of spatial networks of activities and
social networks of interactions, to provide fine-grained characterizations of urban
space. These characterizations could help measure the diversity of urban environments
and examine whether there exist common laws governing the social activity of different
groups, irrespective of the spatial diversity. Attempts have already been made in this
regard, as stated in Sect. 7.2.1, and additional ones are currently being undertaken.
Overall, the framework proposed by this research has potential to open avenues of
quantitative explorations of urban dynamics by employing a wide range of available
data sources, contributing to the development of a new science of cities.
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The following code represents the ROUTE Ontology (Chapter 3), expressed in RDF/XML
syntax.

<?xml version="1.0"?>

<IDOCTYPE rdf:RDF [

<IENTITY schema “http://schema.org/#" >

<IENTITY foaf “http://xmlIns.com/foaf/0.1" >

<IENTITY terms “http://purl.org/dc/terms/" >

<IENTITY dct “http://purl.org/dc/terms/#" >

<IENTITY vann "“http://purl.org/vocab/vann/" >

<IENTITY time “http://www.w3.0rg/2006/time#" >
<IENTITY dbpedia-owl “http://dbpedia.org/ontology#" >
<IENTITY ns “http:/ /creativecommons.org/ns#" >

<IENTITY owl “http://www.w3.0rg/2002/07 /owl#" >
<IENTITY dc “http://purl.org/dc/elements/1.1" >

<IENTITY dc "http://purl.org/dc/elements/1.1/" >

<IENTITY xsd “http://www.w3.0org/2001/XMLSchema#" >
<IENTITY owl2xml “http://www.w3.0rg/2006/12/owl2-xml#" >
<IENTITY rdfs "http://www.w3.0rg/2000/01/rdf-schema#” >

<IENTITY wgs84 _pos "http://www.w3.0org/2003/01/geo/wgs84 _pos#t" >

<IENTITY rdf “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#" >

<IENTITY otn “http://www.pms.ifi.lmu.de/rewerse-wgal/otn/OTN.owl" >

<rdf:RDF xmlIns="http://www.w3.org/2002/07 /owl#"

xml:base="http://www.w3.0rg/2002/07/owl"
xmlns:dc="&dc;/"
xmlns:ns="http://creativecommons.org/ns#"
xmins:dbpedia-owl="http://dbpedia.org/ontology#"
xmlns:wgs84 _pos="http://www.w3.0org/2003/01/geo/wgs84 _pos#"
xmlns:foaf="http://xmlns.com/foaf/0.1"
xmlns:terms="http://purl.org/dc/terms/"
xmlns:vann="http://purl.org/vocab/vann/"
xmins:schema="http://schema.org/#"
xmlins:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"”
xmlns:time="http://www.w3.org/2006/time#"
xmlns:owl2xml="http://www.w3.0rg/2006/12/owl2-xml#"
xmlns:dct="&terms;#"
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xmins:owl="http://www.w3.0rg/2002/07/owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:otn="http://www.pms.ifi.lmu.de/rewerse-wgal/otn/OTN.owl">
<Ontology rdf:about="https://route-owl.github.io/ontology” >
<rdfs:comment></rdfs:comment>
<terms:creator>Achilleas Psyllidis</terms:creator>
<terms:title>ROUTE - Route Ontology of Urban Transportation Entities</
terms:title>
<dct:subject xml:lang="en">This ROUTE ontology describes public urban
transportation routes. It also describes concepts pertinent to trip services, pickup and
drop-off types, time intervals, frequency, geographical information about stops, among
other related concepts.</dct:subject>
<ns:license>https://creativecommons.org/licenses/by/4.0/</ns:license>
<vann:preferredNamespacePrefix>route</vann:preferredNamespacePrefix>
<dc:identifier>https://route-owl.github.io/ontology< /dc:identifier>
<dct:subject xml:lang="gr">H ovtoAoyia ROUTE mteptypadel TG SIadpOUES TwY
QOTIKWY OUYKOWVWVIWY. TTApEAANAQ, TLEQLYPADEL EVWOIEG OXETIKEG LLE TIG UTINPECIEG
dladpopwy, Toug TUTouG eMBiBacng kat aroBiBacng, Ta XPovIKa SIacTAATA,
TN ouXvVOTNTA, YEWYPADIKEG TTANPOPOPIEG OXETIKES KLE TIG OTACELG, KABWG KAl
TIAPATANCIEG évoleq. < /dct:subject>
<imports rdf:resource="http://vocab.gtfs.org/terms#"/ >
<imports rdf:resource="http://www.w3.org/2006/time" />
</Ontology>

<!-- / Annotation properties // -->

<I-- http://purl.org/dc/elements/1.1/identifier -->
<AnnotationProperty rdf:about="&dc;/identifier"/>
<l-- http://purl.org/dc/terms/description -->

<AnnotationProperty rdf:about="&terms;description” />

<l-- http://purl.org/dc/terms/#subject -->

<AnnotationProperty rdf:about="&terms;#subject”/>
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<l-- // Object Properties // -->

<!-- https://route-owl.github.io/ontology#belongsTo -->

<ObjectProperty rdf:about="https://route-owl.github.io/ontology#belongsTo" >
<inverseOf rdf:resource="https://route-owl.github.io/ontology#stopsAt" />

</ObjectProperty>

<l-- https://route-owl.github.io/ontology#endsOn -->

<ObjectProperty rdf:about="https://route-owl.github.io/ontology#tendsOn"/ >

<!-- https://route-owl.github.io/ontology#hasDescription -->

<ObjectProperty rdf:about="https://route-owl.github.io/
ontology#hasDescription”/>

<l-- https://route-owl.github.io/ontology#hasEndPoint -->

<ObjectProperty rdf:about="https://route-owl.github.io/ontology#hasEndPoint"/ >

<I-- https://route-owl.github.io/ontology#hasHeadSign -->

<ObjectProperty rdf:about="https://route-owl.github.io/ontology#hasHeadSign"/ >

<!-- https://route-owl.github.io/ontology#hasID -->

<ObjectProperty rdf:about="https://route-owl.github.io/ontology#hasID" />

<lI-- https:/ /route-owl.github.io/ontology#hasLocation -->

<ObjectProperty rdf:about="https://route-owl.github.io/ontology#hasLocation” >
<rdfs:label>haslLocation</rdfs:label>
<rdfs:comment xml:lang="en">The relation between something and the point, or
other geometrical thing in space, where it is. For example, the relationship between a
radio tower and a Point with a given lat and long. Or a relationship between a park and
its outline as a closed arc of points, or a road and its location as a arc (a sequence of
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points). Clearly in practice there will be limit to the accuracy of any such statement, but
one would expect an accuracy appropriate for the size of the object and uses such as

mapping .
</rdfs:comment>
</ObjectProperty>

<I-- https://route-owl.github.io/ontology#hasOrder -->

<ObjectProperty rdf:about="https://route-owl.github.io/ontology#hasOrder” />

<1-- https://route-owl.github.io/ontology#hasPoint -->

<ObjectProperty rdf:about="https://route-owl.github.io/ontology#hasPoint" />

<l-- https://route-owl.github.io/ontology#hasSchedule -->

<ObjectProperty rdf:about="https://route-owl.github.io/ontology#hasSchedule" />

<!-- https://route-owl.github.io/ontology#hasStartPoint -->

<ObjectProperty rdf:about="https://route-owl.github.io/ontology#hasStartPoint"/ >

<l-- https://route-owl.github.io/ontology#hasType -->

<ObjectProperty rdf:about="https://route-owl.github.io/ontology#hasType" />

<I-- https://route-owl.github.io/ontology#hasURL -->

<ObjectProperty rdf:about="https://route-owl.github.io/ontology#hasURL" />

<I-- https://route-owl.github.io/ontology#inDirection -->

<ObjectProperty rdf:about="https://route-owl.github.io/ontology#inDirection” />

<l-- https:/ /route-owl.github.io/ontology#isLocatedIn -->
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<ObjectProperty rdf:about="https://route-owl.github.io/ontology#isLocatedIn"/ >

<!-- https://route-owl.github.io/ontology#runBy -->

<ObjectProperty rdf:about="https://route-owl.github.io/ontology#runBy"/ >

<l-- https://route-owl.github.io/ontology#startsOn -->

<ObjectProperty rdf:about="https://route-owl.github.io/ontology#startsOn" />

<l-- https://route-owl.github.io/ontology#stopsAt -->

<ObjectProperty rdf:about="https://route-owl.github.io/ontology#stopsAt"/>

<l-- https://route-owl.github.io/ontology#fworksOn -->

<ObjectProperty rdf:about="https://route-owl.github.io/ontology#worksOn" />

<!l-- // Data properties // -->
<I-- http://vocab.gtfs.org/terms#headsign -->
<rdf:Description rdf:about="http://vocab.gtfs.org/terms#headsign”>
<rdfs:domain rdf:resource="http://vocab.gtfs.org/terms#Trip" />
</rdf:Description>
<l-- http://www.w3.0rg/2003/01/geo/wgs84 _postlat -->
<DatatypeProperty rdf:about="&wgs84 _pos;lat”>
<rdfs:range rdf:resource="&xsd;double"/>
</DatatypeProperty>

<!-- http://www.w3.0rg/2003/01/geo/wgs84 _pos#long -->

<DatatypeProperty rdf:about="&wgs84 _pos;long”>
<rdfs:range rdf:resource="&xsd;double"/>
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</DatatypeProperty>

<I-- https://route-owl.github.io/ontology#ID -->

<DatatypeProperty rdf:about="https://route-owl.github.io/ontology#ID" >
<rdfs:domain rdf:resource="http://vocab.gtfs.org/terms#Trip” />
<rdfs:range rdf:resource="&xsd;string"/ >

</DatatypeProperty>

<l-- https://route-owl.github.io/ontology#URL -->

<DatatypeProperty rdf:about="https://route-owl.github.io/ontology#URL" >
<rdfs:range rdf:resource="&xsd;string"/ >

</DatatypeProperty>

<I-- https://route-owl.github.io/ontology#code -->

<DatatypeProperty rdf:about="https://route-owl.github.io/ontology#code”>
<rdfs:range rdf:resource="&xsd;string"/ >

</DatatypeProperty>

<!-- https://route-owl.github.io/ontology#description -->

<DatatypeProperty rdf:about="https://route-owl.github.io/ontology#description”/ >

<1-- https:/ /route-owl.github.io/ontology#language -->

<DatatypeProperty rdf:about="https://route-owl.github.io/ontology#language" >
<rdfs:range rdf:resource="&xsd;language”/ >

</DatatypeProperty>

<l-- https:/ /route-owl.github.io/ontology#longName -->

<DatatypeProperty rdf:about="https://route-owl.github.io/ontology#longName" >
<rdfs:range rdf:resource="&xsd;string"/>

</DatatypeProperty>

<1-- https://route-owl.github.io/ontology#name -->

<DatatypeProperty rdf:about="https://route-owl.github.io/ontology#name" >

<rdfs:range rdf:resource="&xsd;string"/>
</DatatypeProperty>
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<l-- https://route-owl.github.io/ontology#order -->

<DatatypeProperty rdf:about="https://route-owl.github.io/ontology#order” >
<rdfs:range rdf:resource="&xsd;integer"/ >
</DatatypeProperty>

<l-- https://route-owl.github.io/ontology#phone -->

<DatatypeProperty rdf:about="https://route-owl.github.io/ontology#phone" >
<rdfs:range rdf:resource="&xsd;string" />
</DatatypeProperty>

<!I-- https://route-owl.github.io/ontology#shortName -->

<DatatypeProperty rdf:about="https://route-owl.github.io/ontology#shortName" >
<rdfs:range rdf:resource="&xsd;string" />
</DatatypeProperty>

<1-- https://route-owl.github.io/ontology#timezone -->

<DatatypeProperty rdf:about="https://route-owl.github.io/ontology#timezone" >
<rdfs:range rdf:resource="&xsd;nonNegativelnteger”/ >
</DatatypeProperty>

<!-- /[ Classes // -->
<!-- http://dbpedia.org/ontology/City -->

<Class rdf:about="http://dbpedia.org/ontology/City" >
<rdfs:subClassOf rdf:resource="http://schema.org/AdministrativeArea” />
<rdfs:comment xml:lang="en">A relatively large and permanent settlement,
particularly a large urban settlement< /rdfs:comment>
<rdfs:comment xml:lang="fr">Ville</rdfs:comment>
<rdfs:comment xml:lang="ga">Cathair</rdfs:comment>
<rdfs:comment xml:lang="gr">ToAN</rdfs:comment>
</Class>

<l-- http://schema.org/AdministrativeArea -->

<Class rdf:about="http://schema.org/AdministrativeArea" >
<rdfs:subClassOf rdf:resource="http://schema.org/Place”/>
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<rdfs:comment xml:lang="en">A geographical region under the jurisdiction of a
particular government.</rdfs:comment>
<rdfs:comment xml:lang="fr">Zone administrative</rdfs:comment>
<rdfs:comment xml:lang="ga" >Ceantair Riarachain</rdfs:comment>
<rdfs:comment xml:lang="gr" > Alointikr| Tleploxr|< /rdfs:comment>
</Class>

<I-- http://schema.org/Place -->

<Class rdf:about="http://schema.org/Place”>
<terms:description xml:lang="en">A Place might have definite or indefinite
boundaries. Geographic spaces can be a position, line, area, or volume.</
terms:description>
<rdfs:comment xml:lang="en">A geographic or virtual part of space.</
rdfs:comment>
<rdfs:comment xml:lang="fr">Lieu</rdfs:comment>
<rdfs:comment xml:lang="ga" >Ait</rdfs:comment>
<rdfs:comment xml:lang="gr" >Témog< /rdfs:comment>
</Class>

<I-- http://vocab.gtfs.org/terms#Agency -->

<rdf:Description rdf:about="http://vocab.gtfs.org/terms#Agency” >
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/
ontology#timezone"/ >
<someValuesFrom rdf:resource="&xsd;nonNegativelnteger”/ >
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/ontology#URL" />
<someValuesFrom rdf:resource="&xsd;string"/>
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/ontology#phone” />
<someValuesFrom rdf:resource="&xsd;string" />
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
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<Restriction>

<onProperty rdf:resource="https://route-owl.github.io/ontology#name" />

<someValuesFrom rdf:resource="&xsd;string" />
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>

<onProperty rdf:resource="https://route-owl.github.io/ontology#language” />

<someValuesFrom rdf:resource="&xsd;language” />
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>

<onProperty rdf:resource="http:/ /vocab.gtfs.org/terms#hasService" />
<someValuesFrom rdf:resource="http://vocab.gtfs.org/terms#Service" />

</Restriction>
</rdfs:subClassOf>
</rdf:Description>

<!-- http:/ /vocab.gtfs.org/terms#Route -->

<rdf:Description rdf:about="http://vocab.gtfs.org/terms#Route” >

<rdfs:subClassOf>
<Restriction>

<onProperty rdf:resource="https://route-owl.github.io/ontology#hasType" />
<someValuesFrom rdf:resource="http://vocab.gtfs.org/terms#RouteType"/>

</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/
ontology#longName" />
<someValuesFrom rdf:resource="&xsd;string" />
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/
ontology#shortName" />
<someValuesFrom rdf:resource="&xsd;string" />
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
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<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/ontology#1D"/ >
<someValuesFrom rdf:resource="&xsd;string"/>
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="http://vocab.gtfs.org/terms#color”/ >
<someValuesFrom rdf:resource="&xsd;string" />
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/
ontology#description”/ >
<someValuesFrom rdf:resource="&xsd;string"/>
</Restriction>
</rdfs:subClassOf>
<rdfs:comment xml:lang="fr">Route</rdfs:comment>
<rdfs:comment xml:lang="ga">Chursa</rdfs:comment>
<rdfs:comment xml:lang="gr" >Tlopeia< /rdfs:comment>
</rdf:Description>

<l-- http://vocab.gtfs.org/terms#Service -->

<rdf:Description rdf:about="http://vocab.gtfs.org/terms#Service" >
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="http://vocab.gtfs.org/terms#monday"”/>
<someValuesFrom rdf:resource="&xsd;boolean"/>
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/ontology#tendsOn" />
<someValuesFrom rdf:resource="&time;DateTimeDescription”/>
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/ontology#runBy"/ >
<someValuesFrom rdf:resource="http://vocab.gtfs.org/terms#Agency” />
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</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="http://vocab.gtfs.org/terms#sunday” />
<someValuesFrom rdf:resource="&xsd;boolean"/>
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="http://vocab.gtfs.org/terms#tuesday”/ >
<someValuesFrom rdf:resource="&xsd;boolean"/>
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="http://vocab.gtfs.org/terms#wednesday”/>
<someValuesFrom rdf:resource="&xsd;boolean"/>
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="http://vocab.gtfs.org/terms#friday” />
<someValuesFrom rdf:resource="&xsd;boolean"/>
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="http://vocab.gtfs.org/terms#thursday”/ >
<someValuesFrom rdf:resource="&xsd;boolean”/>
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="http://vocab.gtfs.org/terms#saturday” />
<someValuesFrom rdf:resource="&xsd;boolean”/>
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/ontology#worksOn" />
<someValuesFrom rdf:resource="&time;DayOfWeek" />
</Restriction>
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</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/ontology#startsOn"/ >
<someValuesFrom rdf:resource="&time;DateTimeDescription”/>
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/ontology#1D"/ >
<someValuesFrom rdf:resource="&xsd;string" />
</Restriction>
</rdfs:subClassOf>
<rdfs:comment xml:lang="fr">Service</rdfs:comment>
<rdfs:comment xml:lang="ga" >Seirbhis</rdfs:comment>
<rdfs:comment xml:lang="gr">Ymnpeoia</rdfs:comment>
</rdf:Description>

<1-- http:/ /vocab.gtfs.org/terms#Stop -->

<rdf:Description rdf:about="http://vocab.gtfs.org/terms#Stop" >
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/ontology#I1D" />
<someValuesFrom rdf:resource="&xsd;string" />
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="&wgs84 _pos;lat"/>
<someValuesFrom rdf:resource="&xsd;double" />
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/ontology#code" />
<someValuesFrom rdf:resource="&xsd;string" />
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
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<onProperty rdf:resource="https://route-owl.github.io/
ontology#description”/ >
<someValuesFrom rdf:resource="&xsd;string" />
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="&wgs84 _pos;long"/>
<someValuesFrom rdf:resource="&xsd;double"/>
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/ontology#name" />
<someValuesFrom rdf:resource="&xsd;string" />
</Restriction>
</rdfs:subClassOf>
<rdfs:comment xml:lang="fr">Arrét</rdfs:comment>
<rdfs:comment xml:lang="ga">Stop</rdfs:comment>
<rdfs:comment xml:lang="gr">>tdon</rdfs:comment>
</rdf:Description>

<l-- http://vocab.gtfs.org/terms#StopTime -->

<rdf:Description rdf:about="http://vocab.gtfs.org/terms#StopTime" >
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="http://vocab.gtfs.org/terms#hasPickupType" />
<someValuesFrom rdf:resource="http://vocab.gtfs.org/terms#PickupType" />
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="http://vocab.gtfs.org/terms#isStop" />
<someValuesFrom rdf:resource="http:/ /vocab.gtfs.org/terms#Stop" />
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="http:/ /vocab.gtfs.org/terms#hasDropOffType"/ >
<someValuesFrom rdf:resource="http://vocab.gtfs.org/
terms#DropOffType”/ >
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</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/ontology#ID"/ >
<someValuesFrom rdf:resource="&xsd;string" />
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/ontology#order” />
<someValuesFrom rdf:resource="&xsd;integer"/>
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/
ontology#belongsTo"/ >
<someValuesFrom rdf:resource="http://vocab.gtfs.org/terms#Trip"/>
</Restriction>
</rdfs:subClassOf>
<rdfs:comment xml:lang="fr">Horaire</rdfs:comment>
<rdfs:comment xml:lang="ga">Am Stad</rdfs:comment>
<rdfs:comment xml:lang="gr">Qpaplo Zrdcewv</rdfs:comment>
</rdf:Description>

<l-- http://vocab.gtfs.org/terms#Trip -->

<rdf:Description rdf:about="http://vocab.gtfs.org/terms#Trip”>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/ontology#stopsAt”/ >
<someValuesFrom rdf:resource="http://vocab.gtfs.org/terms#StopTime" />
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="http://vocab.gtfs.org/terms#hasPickupType" />
<someValuesFrom rdf:resource="http://vocab.gtfs.org/terms#PickupType" />
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
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<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/
ontology#hasEndPoint”/ >
<someValuesFrom rdf:resource="https://route-owl.github.io/
ontology#EndPoint" />
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/ontology#1D" />
<someValuesFrom rdf:resource="&xsd;string"/>
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="http://vocab.gtfs.org/terms#hasRoute"/ >
<someValuesFrom rdf:resource="http://vocab.gtfs.org/terms#Route" />
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="http://vocab.gtfs.org/terms#direction”/ >
<someValuesFrom rdf:resource="&xsd;boolean"/>
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/
ontology#hasStartPoint” />
<someValuesFrom rdf:resource="https://route-owl.github.io/
ontology#StartPoint"/ >
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="http://vocab.gtfs.org/terms#hasDropOffType"”/ >
<someValuesFrom rdf:resource="http://vocab.gtfs.org/
terms#DropOffType” />
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="http://vocab.gtfs.org/terms#headsign” />
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<someValuesFrom rdf:resource="&xsd;string" />
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="http://vocab.gtfs.org/terms#hasService"/ >
<someValuesFrom rdf:resource="http://vocab.gtfs.org/terms#Service"/>
</Restriction>
</rdfs:subClassOf>
<rdfs:comment xml:lang="fr">Voyage</rdfs:comment>
<rdfs:comment xml:lang="ga">Turas</rdfs:comment>
<rdfs:comment xml:lang="gr">Aladpoun</rdfs:comment>
</rdf:Description>

<I-- http://www.w3.0rg/2003/01/geo/wgs84 _pos#Point -->

<Class rdf:about="&wgs84 _pos;Point"”>
<rdfs:label xml:lang="en">Point</rdfs:label>
<rdfs:subClassOf rdf:resource="&wgs84 _pos;SpatialThing"/>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="&wgs84 _pos;lat”/>
<someValuesFrom rdf:resource="&xsd;double" />
</Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="&wgs84 _pos;long"/ >
<someValuesFrom rdf:resource="&xsd;double" />
</Restriction>
</rdfs:subClassOf>
<rdfs:comment xml:lang="en"> Uniquely identified by lat/long/alt. i.e.

spaciallylntersects(P1, P2) :- lat(P1, LAT), long(P1, LONG), alt(P1, ALT),
lat(P2, LAT), long(P2, LONG), alt(P2, ALT).

sameThing(P1, P2) :- type(P1, Point), type(P2, Point), spaciallylntersects(P1, P2).
</rdfs:comment>
<rdfs:comment xml:lang="en">A point, typically described using a coordinate
system relative to Earth, such as WGS84.</rdfs:comment>
<rdfs:comment xml:lang="fr">Position</rdfs:comment>
<rdfs:comment xml:lang="ga" >Paointe</rdfs:comment>
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<rdfs:comment xml:lang="gr">>nueio / ©¢on</rdfs:comment>
</Class>

<I-- http://www.w3.0rg/2003/01/geo/wgs84_pos#SpatialThing -->

<Class rdf:about="&wgs84 _pos;SpatialThing"”>
<rdfs:label xml:lang="en">SpatialThing</rdfs:label>
<rdfs:comment xml:lang="en">Anything with spatial extent, i.e. size, shape, or
position.
e.g. people, places, bowling balls, as well as abstract areas like cubes.</rdfs:comment>
</Class>

<l-- https://route-owl.github.io/ontology#EndPoint -->

<Class rdf:about="https://route-owl.github.io/ontology#EndPoint" >
<rdfs:subClassOf>
<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/
ontology#isLocatedIn”/>
<someValuesFrom rdf:resource="http://schema.org/AdministrativeArea"/ >
</Restriction>
</rdfs:subClassOf>
</Class>

<l-- https://route-owl.github.io/ontology#OASAFeed -->

<Class rdf:about="https://route-owl.github.io/ontology#OASAFeed" >
<rdfs:label>OASA Feed</rdfs:label>
<rdfs:subClassOf rdf:resource="http://www.w3.org/ns/dcat#Dataset”/ >
<rdfs:comment xml:lang="en">Athens Urban Transport Organisation data. The
routes of the public urban transportation system for the city of Athens are contained.
The data include the stops and routes for bus, trolley, subway, tram and commuter
rail.</rdfs:comment>
</Class>

<l-- https://route-owl.github.io/ontology#StartPoint -->

<Class rdf:about="https://route-owl.github.io/ontology#StartPoint" >
<rdfs:subClassOf>
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<Restriction>
<onProperty rdf:resource="https://route-owl.github.io/
ontology#isLocatedIn”/ >
<someValuesFrom rdf:resource="http://schema.org/AdministrativeArea”/ >
</Restriction>
</rdfs:subClassOf>
</Class>
</rdf:RDF>
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Appendix B

281

DCAT & VoID Documentation
(Chapter 3)

The following respectively comprise the DCAT and VoID documentation of the ROUTE
Ontology (Chapter 3) and the resulting linked dataset that is mapped to it.

DCAT Documentation

@prefixos: <http://a9.com/-/spec/opensearch/1.1/>.
@prefixdct: <http://purl.org/dc/terms/> .

@prefixxsd: <http://www.w3.0org/2001/XMLSchema#> .
@prefix api: <http://purl.org/linked-data/api/vocab#> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix xhv: <http://www.w3.0rg/1999/xhtml/vocab#> .

<http://route-owl.github.io/>
a dct:Dataset;
dct:license <https://creativecommons.org/licenses/by/4.0/>;
dct:source  “This ROUTE ontology describes public urban transportation
routes. It also describes concepts pertinent to trip services, pickup and drop-off types,
time intervals, frequency, geographical information about stops, among other related
concepts.”;
dct:publisher “Achilleas Psyllidis”;
dct:language <http://id.loc.gov/vocabulary/iso639--1/en>,
dct:accrualPeriodicity <http://purl.org/linked--data/sdmx/2009/code#freq-A>;

VoID Documentation

@prefix rdf:<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs:<http://www.w3.0rg/2000/01/rdf-schema#>.
@prefix foaf:<http://xmlns.com/foaf/0.1>.

@prefix dcterms:<http://purl.org/dc/terms/#>.

@prefix void:<http://rdfs.org/ns/void#>.

@prefix xsd:<http://www.w3.0org/2001/XMLSchema#>.
@prefix owl: <http://www.w3.0rg/2002/07/owl#> .

DCAT & VoID Documentation (Chapter 3)



#itdataset

<http://route-owl.github.io/>

rdf:type void:Dataset;

foaf:homepage<http://route-owl.github.io/>

dcterms:title “"ROUTE - Route Ontology of Urban Transportation Entities”

dcterms:description “This ROUTE ontology describes public urban transportation
routes. It also describes concepts pertinent to trip services, pickup and drop-off types,
time intervals, frequency, geographical information about stops, among other related
concepts.”

void:sparqlEndpoint <http://route-owl.github.io/spargl>;

void:uriSpace "http://route-owl.github.io/resource/";

dcterms:source “This ROUTE ontology describes public urban transportation
routes. It also describes concepts pertinent to trip services, pickup and drop-off types,
time intervals, frequency, geographical information about stops, among other related
concepts.”;

dcterms:created “2015-06-11"""xsd:date;

dcterms:licence <https://creativecommons.org/licenses/by/4.0/>;

dcterms:subject <http://route-owl.github.io/resource/agency/agency>;

void:triples 4593531;

void:entities 271;

void:classes 51;

void:properties 166;

void:distinctSubjects ?;

void:distinctObjects ?;

:DBpedia rdf:type void:Dataset;

foaf:homepage <http://dbpedia.org/>;

dcterms:title “Athen Mass Transit System”;

dcterms:description “DBpedia is a crowd-sourced community effort to extract
structured information from Wikipedia and make this information available on the
Web. DBpedia allows you to ask sophisticated queries against Wikipedia, and to link
the different data sets on the Web to Wikipedia data. We hope that this work will
make it easier for the huge amount of information in Wikipedia to be used in some
new interesting ways. Furthermore, it might inspire new mechanisms for navigating,
linking, and improving the encyclopedia itself.”;

void:exampleResource <http://dbpedia.org/resource/Athens_Mass_Transit _
System>.

:DBpedia rdf:type void:Dataset;
foaf:homepage <http://dbpedia.org/>;
dcterms:title “AdministrativeArea”;
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dcterms:description "DBpedia is a crowd-sourced community effort to extract
structured information from Wikipedia and make this information available on the
Web. DBpedia allows you to ask sophisticated queries against Wikipedia, and to link
the different data sets on the Web to Wikipedia data. We hope that this work will
make it easier for the huge amount of information in Wikipedia to be used in some
new interesting ways. Furthermore, it might inspire new mechanisms for navigating,
linking, and improving the encyclopedia itself.”;

void:exampleResource <http://dbpedia.org/resource/Glyfada>.

:DBpedia _ROUTE rdf:type void:Linkset;
void:linkPredicate owl:sameAs;

void:target <http://route-owl.github.io/>;
void:target :DBpedia

:GeoNames rdf:type void:Dataset;

foaf:homepage <http://www.geonames.org>;

dcterms:title “lat”;

dcterms:description “The GeoNames geographical database covers all countries
and contains over eight million placenames that are available for download free of
charge.”;

void:exampleResource <http://sws.geonames.org/379838/>.

:GeoNames rdf:type void:Dataset;

foaf:homepage <http://www.geonames.org>;

dcterms:title "long”;

dcterms:description “The GeoNames geographical database covers all countries
and contains over eight million placenames that are available for download free of
charge.”;

void:exampleResource <http://sws.geonames.org/237275/>.

:GeoNames_ROUTE rdf:type void:Linkset;
void:linkPredicate owl:sameAs;
void:target <http://route-owl.github.io/>;
void:target :GeoNames
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Appendix C

285

Data exploration and visualization -
SocialGlass frontend (Chapter 6)

The following images illustrate the various data visualization and filtering options of
the SocialGlass frontend for data coming from different geo-enabled social media.
Overall, they comprise the data exploration and visualization component of the web-

based system (see Sect. 6.4.1).
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Instagram
Twitter
CBS

Close Add Layer

FIGURE 32 Selection of data sources. Sina Weibo is an additional source, in the case of Chinese cities.

Points: Posts
Path Routes
Path Arcs
Heatmap: Posts

Choropleth: Posts
Choropleth: Venue Categories
Chorapleth: User Type
Choropleth: Gender
Choropleth: Age

FIGURE 33 Types of data visualization. Each type represents a separate layers, on top of the map-based user interface.
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POI Source
Text Query

FIGURE 34 Data filters.

E~

FIGURE 35 Dynamic point clusters.
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W1 Heatrap: Posts
+ Platforme: twitter

FIGURE 36 Activity heat maps. Time sliders (right pane) enable the exploration of changes in the activity patterns in the course of a
day.

FIGURE 37 Origin-Destination (OD) paths. Larger edge thickness and color density illustrate larger flow volumes.
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FIGURE 38 Individual trajectories (path routes).

FIGURE 39 Choropleth maps with additional information on the daily distribution of social activity.
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appendixD  Visual exploratory analysis of
spatiotemporal activity using
SocialGlass (Chapter 6)
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FIGURE 40 Heat map of residents' activity during the ALF event (27/11/2014 — 18/11/2015), as inferred from Twitter.

FIGURE 41 Heat map of residents' activity during the ALF event (27/11/2014 — 18/11/2014), as inferred from Instagram.
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FIGURE 42 Heat map of residents' activity before the ALF event (13/11/2014 — 26/11/2014), asinferred from Twitter.

FIGURE 43 Heat map of residents' activity before the ALF event (13/11/2014 — 26/11/2014), as inferred from Instagram.
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FIGURE 44 Heat map of residents' activity after the ALF event (19/01/2015 — 31/01/2015), as inferred from Twitter.

FIGURE 45 Heat map of residents' activity after the ALF event (19/01/2015 — 31/01/2015), as inferred from Instagram.
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FIGURE 46 Heat map of non-residents' activity during the ALF event (27/11/2014 — 18/11/2015), as inferred from Twitter.

FIGURE 47 Heat map of non-residents' activity during the ALF event (27/11/2014 — 18/11/2015), as inferred from Instagram.
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FIGURE 48 Heat map of non-residents' activity before the ALF event (13/11/2014 — 26/11/2014), as inferred from Twitter.

FIGURE 49 Heat map of non-residents' activity before the ALF event (13/11/2014 — 26/11/2014), as inferred from Instagram.
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FIGURE 50 Heat map of non-residents' activity after the ALF event (19/01/2015 — 31/01/2015), as inferred from Twitter.

FIGURE 51 Heat map of non-residents' activity after the ALF event (19/01/2015 — 31/01/2015), as inferred from Instagram.
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FIGURE 52 Heat map of foreign tourists' activity during the ALF event (27/11/2014 — 18/11/2015), as inferred from Twitter.

FIGURE 53 Heat map of foreign tourists' activity during the ALF event (27/11/2014 — 18/11/2015), as inferred from Instagram.
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FIGURE 54 Heat map of foreign tourists' activity before the ALF event (13/11/2014 — 26/11/2014), as inferred from Twitter.

FIGURE 55 Heat map of foreign tourists' activity before the ALF event (13/11/2014 — 26/11/2014), as inferred from Instagram.
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FIGURE 56 Heat map of foreign tourists' activity after the ALF event (19/01/2015 — 31/01/2015), as inferred from Twitter.

FIGURE 57 Heat map of foreign tourists' activity after the ALF event (19/01/2015 — 31/01/2015), as inferred from Instagram.
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Appendix E

301

Statistical significance tests for global
and local spatial autocorrelation:
Expected mean and variance

of z-scores (Chapter 6)

In Chapter 6, a set of statistical hypothesis tests are presented to assess the
significance of the outcomes obtained from the global and local spatial autocorrelation
analysis (i.e. Global Moran’s I, Local Moran’s Ii' and Getis-Ord Gi*) against the null
hypothesis of no spatial autocorrelation. This Appendix provides the set of formulas
that describe the expected mean and variance of the global and local z-scores for the
resampling and randomization hypotheses.

Global tests for spatial autocorrelation

In the resampling hypothesis, the score of statistical significance z(I) is given by:

I-Ey()

V(D

zy() =

Where the expected mean £ (I) is given by:

1

(n-1)

EN(I) ==
And the corresponding variance Vy(I) is:

W, — nW, + 3W;
A

- e D) (3)

Where:
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Accordingly, for the randomization hypothesis the score of statistical significance z(I)
is given by:

2g(D) = —/— (7)

Where the expected mean Ep(I) is given given by:

1
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And the corresponding variance Vp(I) is:

n[(n? = 3n+3)W, — nW, + 3WZ]  b,[(n? — )W, — 2nW, + 6WZ]

O =T e T - dm - - D - D - D

- [E:(D)? (9)

Where:
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The weights WO' Wl’ WZ are given by Eq. (4), (5), (6) respectively.
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Local tests for spatial autocorrelation

The corresponding z(I;)-scores of a random permutation test, under a null hypothesis
of no spatial association, given by the following (Anselin, 1995):

I — Ep(I)
Ii =
zg(Iy) D) (11)
Where the expected mean Ep(I;) is given by:
(1) = -2 (2)
Ep(1) = -
! (n - 1)

And the variance VR(I,‘) is:

= i e DX R Tmar S LX) S

J#i k#i  h#i

Where b, is given by Eq. (10).
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appendix F - LOcCal spatial autocorrelation analysis
of human activity (scatterplots,
choropleths, cluster maps) (Chapter 6)

Agglomeration of POIs (normalized by area size)

Density of POI locations per areal unit

Moran's I scatterplot (normalized POI locations)

Moran’s I cluster map (normalized POI locations)

[ Not significant
[ High - High
[ tow - Low

Local Moran's I choropleth (normalized POI locations)

Local Moran'sT; - FDR adjuster p-values (normalized POI locations)

Getis-Ord Gi* cluster map (normalized POI locations)

[ Notssignificant
I wigh
[ tow

FIGURE 58 Spatial autocorrelation analysis of the density of POI locations (normalized by area size).
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Twitter Activity | Moran's Scatterplots

Before ALF (13/11/2014 - 26/11/2014) During ALF (27/11/2014 - 18/01/2015)

NON-RESIDENTS RESIDENTS

FOREIGN TOURISTS

FIGURE 59 Moran's I scatterplots of Twitter activity (different social categories, different time periods). Each dot represents an
areal unit (i.e. postcode area). Areas in the upper right and lower left quadrants indicate positive spatial autocorrelation (i.e. high
Ii-values neighboring with other high Iy.-value areas, or low values with low values), thus contributing more to the overall result

306  Revisiting Urban Dynamics through Social Urban Data



After ALF (19/01/2015 - 31/01/2015) Entire Period (13/11/2014 - 31/01/2015)

of global autocorrelation. Conversely, the areas in the upper left and lower right quadrants indicate negative spatial autocorrelation
(i.e. high Ii-values with low values).
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FIGURE 60 Moran's I scatterplots of Instagram activity (different social categories, different time periods). Each dot represents an
areal unit (i.e. postcode area).
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FIGURE 61 Choropleths of local Moran’s I. values of Twitter activity (different social categories, different time periods. Areas are
shaded in proportion to their respective Ii-values (alsoillustrated in the Moran's scatterplots - Fig. 59-60).
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FIGURE 62 Choropleths of local Moran's I. values of Instagram activity (different social categories, different time periods. Areas are
shaded in proportion to their respective Ii-values (alsoillustrated in the Moran's scatterplots - Fig. 59-60).
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FIGURE 63 False Discovery Rate (FDR) adjustments of p-values for Twitter activity, to determine the probability of falsely detecting
significant clusters of I.-values. Dark purple areas suggest that the identified HH clusters are indeed statistically significant and,
therefore, the null hypothesis of zero spatial autocorrelation can be rejected.
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FIGURE 64 False Discovery Rate (FDR) adjustments of p-values for Instagram activity, to determine the probability of falsely
detecting significant clusters of I.-values. Dark purple areas suggest that the identified HH clusters are indeed statistically
significant and, therefore, the null hypothesis of zero spatial autocorrelation can be rejected.
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FIGURE 65 Getis-Ord G, -cluster maps of Twitter activity (different social categories, different time periods). Red areas indicate
clusters of high Gi*-values (hotspots), whereas the light blue/green areas indicate clusters of low Gi*-values (coldspots).
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FIGURE 66 Getis-Ord G, -cluster maps of Instagram activity (different social categories, different time periods). Red areas indicate
clusters of high Gi*-values (hotspots), whereas the light blue/green areas indicate clusters of low Gi*-values (coldspots).
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Residents’ Activity in different time frames (Twitter | 13/11/2014 - 31/01/2015)

Moran’s I scatterplot Local Moran's Ii choropleth

06:00 - 09:00

12:00 - 15:00

18:00 - 21:00

FIGURE 67 Spatial autocorrelation analysis of residents’ activity in different time frames within a day for the entire period (Moran’s
I'scatterplots, local Moran's I choropleths, FDR adjustments of p-vaues, and local Moran's I cluster maps).
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Appendix G

Source code - Spatial autocorrelation
analysis (Chapter 6)

The spatial autocorrelation analysis (global and local indicators, along with statistical
tests) of different variables of human activity, described in Chapter 6, has been

carried out by means of the open-source R statistical language. The following piece

of code is an indicative example of the scripts that have been written in this regard,

and refers specifically to the analysis of residents’ activity, as inferred from Twitter,
covering the entire period in question (i.e. 13/11/2014 - 31/01/2015). For the
spatial autocorrelation analysis and the respective tests of statistical significance of the
remaining variables listed in Table 17, similar scripts have been written.

R Code (Residents' activity - Twitter | Entire period)
#Libraries

require(GISTools)

require(lctools)

require(ggplot2)

require(rgeos)

require(spdep)

#Load shapefile
alf <- readShapePoly("Amsterdam _ALF.shp")

#Combine centroid coordinates
Coords <- cbind(alf$Xi, alf$Yi)

#Define k for weights
bw<-c(2,3,4,5,6,9, 12,18, 24)

#Global Moran's 1
moran <- matrix(data = NA, nrow = 9, ncol = 7)

#For-Loop, calculation of Global Moran's I for multiple k-neighbors
counter<-1
for (bin bw) {
moranl <- moransI(Coords, b, aIf$RES_T_TOTn)
moran[counter,1] <- counter
moran[counter,2] <- b
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moran{counter,3] <- moranI$Morans.I
moran[counter,4] <- moranISz.resampling
moran[counter,5] <- moranISp.value.resampling
moran[counter,6] <- moranI$z.randomization
moran[counter,7] <- moranISp.value.randomization
counter <- counter+1

"ou

colnames(moran) <- c("ID", "k", “Moran’s I", “Z resampling”, “p-value resampling”, “Z

"non

randomization”, “p-value randomization”)
moran

#Save csv file of Global Moran's I matrix
write.csv(moran, file = “MoransI_RES_T_TOT.csv", row.names = F)

#Local Moran's I calculation
|.moran <- l.moransI(Coords, 6, aIf$RES_T_TOTn)

#False Discovery Rate (FDR) test
pval.shade <- shading(c(0.01, 0.05, 0.1), cols = rev(brewer.pal(4, ‘BuPu’)))
choropleth(alf, p.adjust(l.moranSp.value, method = ‘fdr’), shading = pval.shade)

choro.legend(109450.6, 481826.2, pval.shade, cex = 0.8)

title("Residents’ Activity - Twitter / Entire period (Local Moran’s 1/ FDR adjusted
p-values)”, cex.main=1)

map.scale(132909.3, 479326.5, 5000, "Km", 4, 0.5)

#Local Moran'sIchoropleth
shade M <- auto.shading(c(l.moran$Ii, -|.moran$Ii), cols = brewer.pal(5, “Blues”))
choropleth(alf, |.moran$h’, shade_M)

choro.legend(108104.6, 480095.7, shade _M, cex = 0.7)
title("Residents’ Activity | Twitter - Entire period (Local Moran’s I)", cex.main=1)
map.scale(132909.3, 479326.5, 5000, "Km", 4, 0.5)

#Local Moran's [ scatterplot preparation

xmin <- round(ifelse(abs(min(l.moran[,7])) > abs(min(l.moran[,8])), abs(min(l.
moran[,7])), abs(min(l.moran[,8]))))

xmax <- round(ifelse(abs(max(l.moran[,7])) > abs(max(l.moran[,8])), abs(max(l.
moran(,7])), abs(max(l.moran[,8]))))

xmax <- ifelse(xmin > xmax, xmin, xmax)+1

ymax <- xmax

326  Revisiting Urban Dynamics through Social Urban Data



327

Xxmin <- -xmax
ymin <- -ymax

regl <- Im(l.moran[,8]~l.moran[,7])

#Local Moran's I scatterplot

plot(l.moran,7], l.moran[,8], xlim=c(xmin+5, xmax-5), ylim=c(ymin+5, ymax-5),
main="Moran’s I scatterplot of Residents’ Activity (Entire period - Twitter)",
xlab="Residents’ Activity (Twitter - Entire period)”, ylab="lagged Resident’s Activity
(Twitter - Entire period)”,

pch=16, col=rgb(0.4,0.4,0.8,0.6), cex=1.3, cex.axis=0.8, col.axis="gray25")

abline(h=0, lwd=0.7)
abline(v=0, lwd=0.7)
abline(regl, col=2, lwd=2)

#Getis-Ord Gi* statistic
res.tot.G <- |oca|G(aIf$RES_T_TOT, bw)

#Merge data with the map

alf@data$Idx <- seq_len(nrow(alf))

alf_temp <- merge(alf@data, |.moran, by.x="0ObjectID", by.y="ID", sort=F, all=T)
alf@data <- alf_temp[order(alf_temp$1dx), ]

alf@data$1dx <- seq_len(nrow(alf))

alf_templ <- merge(alf@data, res.tot.G, by.x="0ObjectID", by.y="ID", sort=F, all=T)
alf@datal <- alf_templ[order(alf_temp1$1dx), ]

#Data preparation for map visualization

map.f <- fortify(alf, region = “ObjectID")

map.f <- merge(map.f, alf@data, by.x="id", by.y="0ObjectID")
map.f1 <- fortify(alf, region = "ObjectID")

map.fl <- merge(map.f1, alf@datal, by.x="id", by.y="0ObjectID")

#Map visualization

map <- ggplot(map.f, aes(long, lat, group=group)) +

geom _polygon(colour="gray80", aes(fill=as.factor(Cluster))) +
scale_fill_manual(values = c("white", “red”, "gray50", “turquoise”, "pink”)) +
coord_equal() +

labs(x="Easting (m)", y="Northing (m)", fill="Class") +

ggtitle("Moran’s I Cluster Map (Residents’ Activity - Twitter/Entire period)”)

Source code - Spatial autocorrelation analysis (Chapter 6)



map

mapl <- ggplot(map.f1, aes(long, lat, group=group)) +

geom _polygon(colour="gray80", aes(fill=as.factor(Cluster))) +
scale_fill_manual(values = c("white"”, “red"”, “#B8CADB")) +

coord_equal() +

labs(x="Easting (m)", y="Northing (m)", fill="Class") +

ggtitle("Getis-Ord Gi* Cluster Map (Residents’ Activity - Twitter/Entire period)")

mapl
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