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The formulation of a problem is often more essential than its solution,  
which may be merely a matter of mathematical or experimental skill.

Albert Einstein

TOC



TOC



Preface
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Yimin Studio, Architectural Design and Research Institute of South China University 
of Technology (SCUT), in the period 2009-2013. During that period, I began to 
develop my interest in computational design methods and apply them in the practical 
design of a number of large public building projects. Meanwhile, based on the design 
practice, I started to reflect on the important role of building performances and the 
proper use of relevant computational means in achieving high-performing design 
solutions. This reflection brought me to the field of performance-based design, with 
a particular focus on its use in the conceptual design phase of sports buildings.

Since 2014, I have had the opportunity to further my research in the Chair of Design 
Informatics led by Prof. Sevil Sariyildiz, Department of Architectural Engineering 
and Technology, Delft University of Technology (TU Delft). Benefiting from the 
strengths of the chair in computational design research and the collaboration with 
Arup Amsterdam and ESTECO SpA, I was able to focus on optimization and other 
relevant computational techniques, aiming at developing a Multi-Objective and Multi-
Disciplinary Optimization (MOMDO) method suitable for use in ill-defined conceptual 
architectural design.

This research was based on the Agreement for Joint Supervision and Double 
Degree of Doctoral Research between TU Delft and SCUT, and supported by Arup 
Amsterdam, ESTECO SpA, and the Urban Systems and Environment - Joint Research 
Centre between TU Delft and SCUT. This research was funded by: China Scholarship 
Council, South China University of Technology, The National Natural Science 
Foundation of China, State Key Laboratory of Subtropical Building Science, TU Delft 
Sports Engineering Institute, and Arup Amsterdam.
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Summary
Design is goal-directed activity. Its goals are often expressed in the form of 
“performance” which represents how well or badly a design works. Thus, 
Performance-Based Design (PBD) approaches are a natural choice to improve 
the quality of a design. When focusing on the field of building design, some well-
known architectural firms have adopted Performance-Based Building Design 
(PBBD) approaches which show relevant benefits, though these approaches are not 
commonly used by the entire architectural community. Great enhancements to these 
approaches include optimal-design paradigms (i.e., the paradigms where the design 
of a system is formulated or partially formulated as a problem of optimization). 
Recently, these enhanced approaches have made their way to conceptual 
architectural design and allowed a growing number of designers to benefit from 
them. In particular, the approaches enhanced by Multi-Disciplinary Optimization 
(MDO) and Multi-Objective Optimization (MOO) paradigms are receiving increasing 
attention, given their ability to deal with multiple performance criteria from different 
design disciplines during the conceptual design of complex buildings. Nevertheless, 
when looking at the current optimal-design paradigms, there is often a lack of a 
way to ensure the achievement of a reliable optimization problem, which hinders 
reliable design solutions despite the use of advanced optimization algorithms. This 
is the main problem addressed in this research. Achieving such a way is especially 
important for conceptual architectural design because in this phase the design 
tasks are generally ill-defined and the optimization problems formulated are usually 
ill-structured. It can help designers achieve more reliable conceptual solutions 
and make more informed early decisions so that they can benefit more from the 
enhanced Performance-Based Building Design (PBBD) approaches.

A promising way to address the above problem is to highlight the importance 
of Optimization Problem Re-Formulation (Re-OPF). For conceptual architectural 
design, the formulation of an optimization problem is actually more essential than 
its solution. That is to say, an ideal optimal-design paradigm should shift the priority 
from Optimization Problem Solving (OPS) to Optimization Problem Formulation 
(OPF), more specifically to dynamic and interactive Optimization Problem Re-
Formulation (Re-OPF). Such re-formulation allows designers to add and/or remove 
objectives, constraints, and design variables (i.e., shift objective space and design 
space to include unexplored areas and/or exclude existing areas). Thus, the re-
formulation can be seen as a useful way to achieve a more reliable optimization 
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problem. Further, to ensure more informed re-formulation, it is crucial to extract 
relevant knowledge. The knowledge includes, but is not limited to, which objectives 
and constraints should be considered more meaningful, which design variables 
should be considered more promising, and how these elements interact with each 
other. The knowledge can be useful not only for convergent re-formulation but 
also for divergent re-formulation. It can be derived by analyzing quantitative data 
(i.e., input values defining building geometries and output values representing 
performance results) and observing qualitative data (i.e., images showing 
building geometries).

Based on the above idea, a Multi-Objective and Multi-Disciplinary Optimization 
(MOMDO) method suitable for use in ill-defined conceptual architectural design has 
been proposed. This method is the main output of this research. It incorporates 
knowledge-supported, dynamic and interactive Optimization Problem Re-Formulation 
(Re-OPF). The incorporation of such re-formulation is the main innovation of 
this method, which differentiates this method from other methods in the field of 
architectural design optimization. Given that this method is especially meaningful 
for complex buildings, this research focuses on indoor sports halls which are typical 
examples of complex buildings.

The proposed method consists of three phases: Phase-I: Optimization Problem 
Initial-Formulation (Initial-OPF) - a phase responsible for “formulating” an initial 
multi-objective optimization problem; Phase-II: Optimization Problem Re-Formulation 
(Re-OPF) - a phase responsible for “re-formulating” previous multi-objective 
optimization problems; Phase-III: Optimization Problem Solving (OPS) - a phase 
responsible for “solving” a final multi-objective optimization problem. Among these 
phases, the re-formulation phase is the key one; and it consists of three groups 
of actions that can iterate multiple times (i.e., data generation, information and 
knowledge extraction, multi-objective optimization model re-formulation). Depending 
on the different numbers of iterations, two subtypes of the proposed method are 
distinguished. Subtype-I, namely Non-dynamic, Interactive Re-formulation method, 
includes one re-formulation iteration; Subtype-II, namely Dynamic, Interactive Re-
formulation method, includes multiple re-formulation iterations. The first subtype is 
more suitable for the design context where the main purpose is to reduce existing 
design possibilities (i.e., shrink exploration space), such as the circumstance during 
the relatively late sub-phase of conceptual architectural design. The second subtype 
is more suitable for the design context where the main purpose is to spark new 
design possibilities (i.e., expand exploration space), such as the circumstance during 
the relatively early sub-phase of conceptual architectural design.
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To support the implementation of the proposed method, a software workflow has 
been developed. This software workflow is the secondary output of this research. 
It integrates McNeel’s Grasshopper, ESTECO’s modeFRONTIER, and simulation 
software tools Daysim, EnergyPlus, and Karamba3D (that are embedded in 
Grasshopper). The integration relies on a newly developed integration plug-in called 
Grasshopper-modeFRONTIER (Gh-mF) node. The development of this new plug-in is 
based on the collaboration between the Chair of Design Informatics at TU Delft and 
ESTECO SpA. The author of the thesis has participated in the plug-in development 
and testing process.

To demonstrate the use of the proposed method and verify the benefits and 
associated affecting factors, two case studies concerning the conceptual design of 
indoor sports halls have been conducted. Case Study I considers the conceptual 
design of the overall geometry of a sports competition hall, in a context that 
highlights reducing existing design possibilities. Specifically, the geometric design 
variables of the roofs, skylights, external shadings, roof structures, and grandstands 
have been manipulated based on architectural, daylighting, structural, energy, and 
thermal performance criteria. The Subtype-I method (i.e., non-dynamic method) 
has been applied in this case study, focusing on a one-time re-formulation process 
that concerns mainly removing existing variables (i.e., refining an existing concept 
convergently). Case Study II considers the conceptual design of the skylight 
geometry of a sports training hall, in a context that highlights sparking new design 
possibilities. Specifically, the geometric design variables of the roofs, skylights, and 
internal shadings have been manipulated based on architectural, daylighting, energy, 
and cost performance criteria. The Subtype-II method (i.e., dynamic method) has 
been applied in this case study, focusing on a three-time re-formulation process that 
concerns mainly adding new variables (i.e., enriching new concepts divergently). 
These case studies have confirmed the benefits of adopting the proposed method, 
relative to adopting traditional methods that do not incorporate the re-formulation 
phase; on the other hand, they have revealed some factors affecting the behaviors of 
the proposed method.

Finally, at the end of the thesis, the main contributions of this research have been 
summarized; comprehensive answers to all research questions have been presented; 
the main limitations of this research and future research directions have been provided.

KEYWORDS Performance-Based Building Design, Optimal-Design Paradigm, Design as 
Exploration; Optimization Problem Re-Formulation, Multi-Objective Optimization, 
Multi-Disciplinary Optimization, Indoor Sports Halls
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Samenvatting
Ontwerpen is een doelgerichte activiteit. De doelstellingen ervan worden vaak 
uitgedrukt in de vorm van “prestaties”, die aangeven hoe goed of slecht een 
ontwerp werkt. Prestatiegericht ontwerpen (PBD) is dus een natuurlijke keuze 
om de kwaliteit van een ontwerp te verbeteren. Op het gebied van het ontwerpen 
van gebouwen hebben enkele bekende architectenbureaus gekozen voor een op 
prestaties gebaseerd ontwerp (PBBD) dat relevante voordelen oplevert, hoewel 
deze benaderingen niet door de hele architectengemeenschap worden gebruikt. 
Grote verbeteringen van deze benaderingen zijn optimaal ontwerp-paradigma’s 
(d.w.z. paradigma’s waarbij het ontwerp van een systeem wordt geformuleerd of 
gedeeltelijk geformuleerd als een optimalisatieprobleem). Onlangs hebben deze 
verbeterde benaderingen hun weg gevonden naar conceptueel architectuurontwerp 
en een groeiend aantal ontwerpers in staat gesteld ervan te profiteren. Met name 
de verbeterde benaderingen van multidisciplinaire optimalisatie (MDO) en multi-
objectieve optimalisatie (MOO) krijgen steeds meer aandacht, gezien hun vermogen 
om tijdens het conceptuele ontwerp van complexe gebouwen om te gaan met 
meerdere prestatiecriteria uit verschillende ontwerpdisciplines. Toch ontbreekt 
het bij de huidige optimalisatie-ontwerp paradigma’s vaak aan een manier om 
een accuraat optimalisatieprobleem te realiseren, wat ondanks het gebruik van 
geavanceerde optimalisatie-algoritmen betrouwbare ontwerpoplossingen in de 
weg staat. Dit is het belangrijkste probleem dat in dit onderzoek wordt behandeld. 
Het bereiken van een dergelijke manier is vooral belangrijk voor conceptueel 
architectuurontwerp, omdat in deze fase de ontwerptaken meestal slecht 
gedefinieerd zijn en de geformuleerde optimalisatieproblemen meestal slecht 
gestructureerd zijn. Het kan ontwerpers helpen meer betrouwbare conceptuele 
oplossingen te bereiken en beter geïnformeerde vroege beslissingen te nemen, zodat 
zij meer kunnen profiteren van de verbeterde Performance-Based Building Design 
(PBBD) benaderingen.

Een veelbelovende manier om het bovenstaande probleem aan te pakken is 
het belang van herformulering van het optimalisatieprobleem (Re-OPF). Voor 
conceptueel architectuurontwerp is de formulering van een optimalisatieprobleem 
eigenlijk essentiëler dan de oplossing ervan. Met andere woorden, een ideaal 
paradigma voor optimaal ontwerp zou de prioriteit moeten verschuiven van 
het oplossen van optimalisatieproblemen (OPS) naar het formuleren van 
optimalisatieproblemen (OPF), meer bepaald naar dynamische en interactieve 
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herformulering van optimalisatieproblemen (Re-OPF). Met een dergelijke 
herformulering kunnen ontwerpers doelstellingen, beperkingen en ontwerpvariabelen 
toevoegen en/of verwijderen (d.w.z. de doelstellingen- en ontwerpruimte verschuiven 
om onontgonnen gebieden op te nemen en/of bestaande gebieden uit te sluiten). 
De herformulering kan dus worden gezien als een nuttige manier om tot een 
betrouwbaarder optimalisatieprobleem te komen. Verder is het voor een beter 
geïnformeerde herformulering van cruciaal belang dat relevante kennis wordt 
geëxtraheerd. De kennis omvat, maar is niet beperkt tot, welke doelstellingen en 
beperkingen als zinvoller moeten worden beschouwd, welke ontwerpvariabelen als 
kansrijker moeten worden beschouwd, en hoe deze elementen op elkaar inwerken. 
De kennis kan niet alleen nuttig zijn voor convergente herformulering, maar ook 
voor divergente herformulering. Zij kan worden afgeleid door het analyseren van 
kwantitatieve gegevens (d.w.z. inputwaarden die gebouwgeometrieën definiëren 
en outputwaarden die prestatieresultaten weergeven) en het observeren van 
kwalitatieve gegevens (d.w.z. beelden die gebouwgeometrieën tonen).

Op basis van het bovenstaande idee is een Multi-Objectieve en Multi-Disciplinaire 
Optimalisatie (MOMDO)-methode voorgesteld die geschikt is voor gebruik 
bij ongedefinieerde conceptuele architectuurontwerpen. Deze methode is 
het belangrijkste resultaat van dit onderzoek. Ze omvat kennisondersteunde, 
dynamische en interactieve herformulering van optimalisatieproblemen (Re-OPF). De 
integratie van een dergelijke herformulering is de belangrijkste innovatie van deze 
methode, die deze methode onderscheidt van andere methoden op het gebied van 
architectonische ontwerpoptimalisatie. Aangezien deze methode vooral zinvol is voor 
complexe gebouwen, richt dit onderzoek zich op indoor sporthallen, die typische 
voorbeelden zijn van complexe gebouwen.

De voorgestelde methode bestaat uit drie fasen: Fase-I: Optimization Problem Initial-
Formulation (Initial-OPF) - een fase die verantwoordelijk is voor het “formuleren” 
van een initieel multi-objectief optimalisatieprobleem; Fase-II: Optimization 
Problem Re-Formulation (Re-OPF) - een fase die verantwoordelijk is voor het 
“herformuleren” van eerdere multi-objectieve optimalisatieproblemen; Fase-III: 
Optimization Problem Solving (OPS) - een fase die verantwoordelijk is voor het 
“oplossen” van een definitief multi-objectief optimalisatieprobleem. Van deze fasen 
is de herformuleringsfase de belangrijkste; deze bestaat uit drie groepen van acties 
die meerdere iteraties kunnen doorlopen (d.w.z. gegevensgeneratie, informatie- 
en kennisextractie, herformulering van het multi-objectieve optimalisatiemodel). 
Afhankelijk van de verschillende aantallen iteraties, worden twee subtypes van de 
voorgestelde methode onderscheiden. Subtype-I, namelijk de niet-dynamische, 
interactieve herformuleringsmethode, omvat één herformuleringsiteratie; Subtype-
II, namelijk de dynamische, interactieve herformuleringsmethode, omvat meerdere 
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herformuleringsiteraties. Het eerste subtype is meer geschikt voor de ontwerpcontext 
waarin het hoofddoel is de bestaande ontwerpmogelijkheden te verminderen (d.w.z. de 
exploratieruimte te verkleinen), zoals de omstandigheid tijdens de relatief late subfase 
van conceptueel architectonisch ontwerp. Het tweede subtype is meer geschikt voor 
de ontwerpcontext waarin het hoofddoel is om nieuwe ontwerpmogelijkheden aan te 
boren (d.w.z. de exploratieruimte uit te breiden), zoals de omstandigheid is tijdens de 
relatief vroege subfase van conceptueel architectonisch ontwerp.

Ter ondersteuning van de implementatie van de voorgestelde methode is een 
software-workflow ontwikkeld. Deze software-workflow is het secundaire resultaat 
van dit onderzoek. Het integreert Grasshopper van McNeel, modeFRONTIER van 
ESTECO, en simulatiesoftwaretools Daysim, EnergyPlus, en Karamba3D (die zijn 
ingebed in Grasshopper). De integratie berust op een nieuw ontwikkelde integratie 
plug-in genaamd Grasshopper-modeFRONTIER (Gh-mF) node. De ontwikkeling van 
deze nieuwe plug-in is gebaseerd op de samenwerking tussen de leerstoel Design 
Informatics van de TU Delft en ESTECO SpA. De auteur van het proefschrift heeft 
deelgenomen aan de ontwikkeling en het testproces van de plug-in.

Om het gebruik van de voorgestelde methode te demonstreren en de voordelen en 
bijbehorende beïnvloedende factoren te verifiëren, zijn twee casestudies uitgevoerd 
betreffende het conceptuele ontwerp van indoor sporthallen. Casus I betreft het 
conceptuele ontwerp van de algemene geometrie van een sporthal, in een context 
waarin de bestaande ontwerpmogelijkheden worden beperkt. Meer bepaald zijn 
de geometrische ontwerpvariabelen van de daken, dakramen, externe zonwering, 
dakstructuren en tribunes gemanipuleerd op basis van architecturale, daglicht-, 
structurele, energie- en thermische prestatiecriteria. De Subtype-I methode 
(d.w.z. de niet-dynamische methode) is in deze casestudy toegepast, waarbij de 
nadruk ligt op een eenmalig herformuleringsproces dat voornamelijk betrekking 
heeft op het verwijderen van bestaande variabelen (d.w.z. het convergent verfijnen 
van een bestaand concept). Case Study II beschouwt het conceptuele ontwerp 
van de geometrie van het dakraam van een sporttrainingshal, in een context die 
nieuwe ontwerpmogelijkheden benadrukt. Meer bepaald werden de geometrische 
ontwerpvariabelen van de daken, dakramen en interne zonwering gemanipuleerd 
op basis van architecturale, daglicht-, energie- en kostencriteria. De Subtype-II 
methode (d.w.z. de dynamische methode) is in deze casestudy toegepast, waarbij 
de nadruk ligt op een drievoudig herformuleringsproces dat voornamelijk betrekking 
heeft op het toevoegen van nieuwe variabelen (d.w.z. het divergeren van nieuwe 
concepten). Deze casestudies hebben de voordelen van de voorgestelde methode 
bevestigd ten opzichte van de traditionele methoden die de herformuleringsfase niet 
omvatten; anderzijds hebben zij enkele factoren aan het licht gebracht die het gedrag 
van de voorgestelde methode beïnvloeden.
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Ten slotte zijn aan het eind van het proefschrift de belangrijkste bijdragen van dit 
onderzoek samengevat; zijn uitgebreide antwoorden op alle onderzoeksvragen 
gepresenteerd; zijn de belangrijkste beperkingen van dit onderzoek en toekomstige 
onderzoeksrichtingen aangegeven.

SLEUTELWOORDEN Prestatiegericht Gebouw Ontwerp, Optimaal-Ontwerp Paradigma, Ontwerp als 
Verkenning; Optimalisatie Probleem Herformulering, Multi-Objectieve Optimalisatie, 
Multi-Disciplinaire Optimalisatie, Indoor Sporthallen
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1 Introduction
This chapter provides an overview of this research. First, it provides the general 
background (Section 1.1) and the problem statement (Section 1.2). Then, it 
describes the research goals, research questions, research outputs, and research 
methodology, respectively (Section 1.3, 1.4, 1.5 and 1.6); Finally, it describes the 
scientific and societal relevance of the research (Section 1.7).

 1.1 General background

According to Tong and Sriram (1992), design is the process of constructing a 
description of an artifact that satisfies a set of given requirements. Many of these 
requirements can be expressed in the form of “performance”. According to the 
Oxford dictionary, the term “performance” means how well or badly something 
works. Here it means how well or badly a building works in the field of building 
design. Performance-Based Building Design (PBBD) approaches are promising to 
improve the quality of a building design. In these approaches, various performance 
requirements are translated and integrated into a building design (Spekkink, 2005).

This research is concerned with Performance-Based Building Design (PBBD) 
approaches in general. To allow more designers to benefit from these approaches, 
this research advocate enhancing these approaches for conceptual architectural 
design by optimal-design paradigms. Thus, this section provides backgrounds 
concerning conceptual architectural design and optimal-design paradigms 
respectively (Section 1.1.1 and 1.1.2).
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 1.1.1 Background concerning conceptual architectural design

What is a conceptual architectural design and why is it important?

Design in architecture is a goal-directed activity in which decisions are taken about 
the physical form of buildings and their components to ensure their fitness for 
intended purposes, as defined by Radford and Gero (1980). According to their 
definition, a design task in architectural design contains at least two important 
components: the goals and the means.

Conceptual architectural design (or conceptual design for short) here refers to the 
early phase of architectural design where the goal is to meet meaningful design 
requirements by proposing promising design concepts. Thus, the two important 
components of a conceptual design task are the design requirements and the 
design concepts.

Conceptual architectural design is important, mainly because decisions made in this 
phase often have significant impacts on the success of a design. These decisions 
include those concerning the choice of design requirements and concepts. According 
to Pahl et al. (2007), a successful design solution is more likely to derive from the 
choice of the most appropriate concepts than from exaggerated concentration on 
technical details, as it is extremely difficult or impossible to correct fundamental 
shortcomings of early concepts in the late detailed design phase. Moreover, the 
choice of the most meaningful design requirements is even more important, as it can 
significantly affect the choice of design concepts. Thus, it is important to focus more 
on the conceptual design phase.

What are design knowledge and its classification?

The notion of knowledge is closely associated with the notions of information and 
data. In this research, data means values and images, including quantitative data (i.e., 
input values defining building geometries and output values representing performance 
results) and qualitative data (i.e., images showing building geometries); information 
means the processed data that is given meaning in a context; and knowledge means 
the organized information that can be put into practice in some way.

To be more specific, design knowledge here not only refers to the knowledge of 
various disciplines that can be applied in conceptual architectural design but also 
the knowledge of structuring and re-structuring existing disciplinary knowledge. 
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Moreover, there are also other meaningful classifications. According to Tong and 
Sriram (1992), design knowledge can be classified into convergent knowledge - 
the knowledge for helping a design process to converge on an acceptable design 
solution; and divergent knowledge - the knowledge for generating new design 
solutions in design space. According to the types of associated performances, design 
knowledge can be classified into quantitative knowledge - the knowledge about 
quantitative performance (e.g., climatic, structural, and energy performances whose 
evaluations primarily rely on complex mathematical calculations or simulations), 
and qualitative knowledge - the knowledge about qualitative performance (e.g., 
aesthetics performance whose evaluation primarily relies on human subjectivity).

The necessity of increasing knowledge in conceptual 
architectural design

It is necessary to increase design knowledge during conceptual architectural design. 
This necessity can be seen from the paradox between design knowledge and design 
freedom (see FIG.1.1). This paradox means that as a designer increases his/her 
knowledge about a design, he/she may lose the freedom to act on that knowledge 
(La Rocca, 2011); or in short, the more you learn the less freedom you have to use 
what you know (Ullman, 2010). It is especially true in the conceptual design phase. 
As illustrated by the solid curves in FIG.1.1, traditionally, the conceptual design 
phase has a higher level of design freedom that decreases rapidly, but a lower level 
of design knowledge that increases slowly, compared with the late design phases 
(Schrage et al., 1991). As illustrated by the dashed curves in FIG.1.1, ideally, the 
design knowledge can be increased, which can allow for more design freedom to 
support better design decision-making in the conceptual design phase (Mavris and 
DeLaurentis, 2000).

The necessity to increase design knowledge exists for both novice and expert 
architects and engineers. For novices, they may have shortcomings in terms of 
general disciplinary knowledge. In this circumstance, they have the opportunity to 
learn such knowledge by studying the data of alternative designs during conceptual 
architectural design. For experts, it is not always easy to determine which design 
requirements should be considered more meaningful, which design concepts should 
be considered more promising, and how the design requirements and concepts 
interact with each other, especially when dealing with complex projects in a 
multidisciplinary design environment. They may need to re-structure their existing 
disciplinary knowledge and be clearer about how to apply it to specific cases. In this 
sense, they can also acquire relevant knowledge from the study of the data.
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FIG. 1.1 The paradox between design knowledge and design freedom in a design process (revised from 
Schrage et al., 1991)

Note: The solid and dashed curves respectively represent the paradox in a traditional and ideal design 
process. The horizontal bars show the distribution of disciplines across the main phases of a design process.

The difficulty of extracting knowledge in conceptual 
architectural design

Knowledge extraction is often difficult in conceptual architectural design. The 
dynamic changes of design goals and other factors can make knowledge extraction 
difficult. As explained by Radford and Gero (1980): “In order to take design 
decisions, the architect needs information (and knowledge) on the relationship 
between his goals and the means … (But it is) difficult enough to provide (such 
information and knowledge), because in architectural design (especially conceptual 
architectural design) little is static or permanent … It may not be possible to 
completely state his goals; other factors may come into play.”

The difficulty of knowledge extraction can be obviously upgraded, when it comes 
to the conceptual design of complex buildings. The building complexity can bring 
significant challenges to knowledge extraction. This research focuses on indoor 
sports halls as an example. This type of building is complex in terms of both 
geometries and performance. On one hand, indoor sports halls can have a large 
number of building components that are assembled in regular or irregular ways; 
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and the resulting geometries may have complex impacts on building performances. 
On the other hand, they often include sophisticated performance measures from 
multiple disciplines; and these measures may conflict with each other to varying 
degrees. In this circumstance, design knowledge becomes significantly complex, 
which makes it difficult to be extracted.

The ill-defined nature of design tasks in conceptual 
architectural design

In this thesis, we use the term ill-defined or inaccurate to describe a design task 
that has no definitive and reliable formulation of the problem and solutions to the 
problem (Zhu, 2005). In other words, an ill-defined or inaccurate design task here 
refers to a design task that contains uncertain (soft and hard) design requirements 
and/or uncertain design concepts.

Design tasks are usually ill-defined, especially in conceptual architectural design 
where design knowledge is insufficient and knowledge extraction is difficult. Simon 
(1973) stated that a building design task is often ill-defined in many aspects: the 
design requirements are usually vague or unknown; the design concepts in terms 
of forms, structures, and materials can have various valid options; and the design 
process can be organized in various ways. Moreover, as agreed by many studies, 
most real-world design tasks are actually ill-defined, especially in the conceptual 
design phase (Smithers and Troxell, 1990; Navinchandra, 1991; Smithers, 1992; 
Logan and Smithers, 1993; Jonas, 1993; Gero, 1994; Smithers et al., 1994; 
Goel, 1995; Maher et al., 1996; Maher and Poon, 1996; Goldschmidt, 1997). The ill-
defined nature of design tasks is not good for obtaining reliable design solutions.

 1.1.2 Background concerning optimal-design paradigms

What is an optimal-design paradigm and why is it needed?

A paradigm refers to a typical example or pattern of something, according to the 
Oxford dictionary; and it can also refer to a set of assumptions, concepts, values, 
and practices that constitute a way of viewing reality, according to the American 
Heritage dictionary.
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An optimal-design paradigm (or interchangeably a design optimization paradigm) 
here refers to a paradigm where the design of a system is formulated, or partially 
formulated, as a problem of optimization (Arora, 2016). Here, an optimization 
problem or model contains at least three important components: objectives, 
constraints, and design variables. Specifically, an optimization problem is a problem 
of minimizing or maximizing objectives and fulfilling constraints by manipulating 
the values of design variables, whereas an optimization model is a mathematical 
representation of an optimization problem.

Optimal-design paradigms are needed, mainly because they can enhance 
Performance-Based Building Design (PBBD) approaches. Optimal-design paradigms 
can be combined with parametric modeling and performance simulation. By doing 
so, Performance-Based Building Design (PBBD) approaches are enhanced with 
intelligent optimization algorithms, thus facilitating the search for optimal solutions. 
The approaches enhanced by the above computational means are also called 
performative computational design approaches, as proposed by Prof. Sevil Sariyildiz 
(2012) and exemplified in Turrin et al. (2011).

What are Multi-Disciplinary Optimization (MDO) and Multi-Objective 
Optimization (MOO)?

Multi-Disciplinary Optimization (MDO) (see FIG.1.2) and Multi-Objective Optimization 
(MOO) (see FIG.1.3) are two important optimal-design paradigms. They were 
originally used to deal with multi-disciplinary and multi-objective engineering 
design tasks and were later found useful for handling architectural design tasks 
(Evins, 2013; Nguyen et al., 2014; Huang and Niu, 2016). They have different 
focuses and advantages, as described below.

Multi-Disciplinary Optimization (MDO) focuses on how to collaboratively optimize 
the performances of different sub-systems or disciplines of a complex design 
system such as an aerospace vehicle. Its main advantage is that it is more likely to 
obtain better optimal solutions by handling the couplings between different sub-
systems or disciplines than by optimizing each sub-system or discipline sequentially 
(Chittick and Martins, 2009). Since the 1990s, Multi-Disciplinary Optimization 
(MDO) has formally become an important field of research (Schrage et al., 1991; 
Sobieszczanski-Sobieski, 1995; Giesing and Barthelemy, 1998). It was initially 
applied in the field of aircraft design and was later applied to more engineering 
design fields, including the field of automobile design, train design, ship design, 
bridge design, etc., given the multi-disciplinary complexity of these design systems 
(Martins and Lambe, 2013).

TOC



 41 Introduction

Shape Model

Aerodynamics Mass Estimation

Flight dynamics

Structural constraints Thermal constraints Cross range constraints

Optimization
Objective function

Mass

FIG. 1.2 Multi-Disciplinary Optimization (MDO) – an example of optimizing an aerospace vehicle (revised from 
Viviani et al, 2017)
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FIG. 1.3 Multi-Objective Optimization (MOO) (revised from Santín et al., 2017)

Note: For Pereto optimal solutions, no one objective function can be improved without a compromise in at 
least one of the other objectives.
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Multi-Objective Optimization (MOO) focuses on how to simultaneously optimize 
multiple conflicting and incommensurable performance objectives. Its main 
advantage is that designers can understand the best trade-off between multiple 
objectives with the help of a set of non-dominated solutions (i.e., Pareto optimal 
solutions) obtained. Designers can select preferred solutions for further development 
from Pareto optimal solutions, based on their subjective preferences. This is actually 
a particular type of Multi-Objective Optimization (MOO), known as a posterior 
preference articulation approach (Andersson, 2000). In this approach, Pareto 
optimal solutions are independent of designers’ preferences, thus optimization 
operations only need to be performed once (Andersson, 2000). A widely used 
Multi-Objective Optimization (MOO) algorithm is the Non-dominant Sorting Genetic 
Algorithm II (NSGA-II) proposed by Deb et al. (2002).

The combination of Multi-Disciplinary Optimization (MDO) and 
Multi-Objective Optimization (MOO)

The idea of combining Multi-Disciplinary Optimization (MDO) and Multi-Objective 
Optimization (MOO) is natural, given the above advantages. This idea has been 
well-developed in the field of engineering design. It has also got increasing 
attention recently in the field of architectural design, especially in the conceptual 
design phase, as shown in recent reviews (Østergård et al., 2016; Touloupaki and 
Theodosiou; 2017; Ekici et al., 2019).

This research is interested in the Multi-Objective and Multi-Disciplinary Optimization 
(MOMDO) paradigm which is the area where Multi-Disciplinary Optimization (MDO) 
and Multi-Objective Optimization (MOO) intersect. Nevertheless, this research also 
keeps an eye on the area that is beyond that intersection but within the scope of 
Multi-Objective Optimization (MOO), due to the lack of relevant studies.

The framework of the existing Multi-Objective and Multi-
Disciplinary Optimization (MOMDO) paradigm

The existing Multi-Objective and Multi-Disciplinary Optimization (MOMDO) paradigm 
has a framework consisting of three basic modules: a geometry generation module, a 
performance analysis module, and an optimization module, as illustrated in FIG.1.4. 
In this framework, multi-disciplinary performance analysis and multi-objective 
optimization are involved.
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This framework can be divided into two phases: Optimization Problem Formulation 
(OPF) and Optimization Problem Solving (OPS). In the formulation phase, a design 
task is converted into an optimization problem; more specifically, design requirements 
are converted into performance objectives and constraints, and design concepts 
are converted into design variables. In the solving phase, the geometry generation 
module is responsible for creating geometric parametric models; the (multi-
disciplinary) performance analysis module can contain various analytical calculations 
or numerical simulations from different sub-systems or design disciplines, and the 
(multi-objective) optimization module can adopt different Multi-Objective Optimization 
(MOO) algorithms belonging to the posterior preference articulation approach.
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FIG. 1.4 A framework that integrates a geometry generation module, a (multi-disciplinary) performance analysis module, and a 
(multi-objective) optimization module
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Overall, this framework can help designers make performance-based design 
decisions efficiently during conceptual architectural design, through feedback loops 
from performance assessment to design modification.

The ill-structured nature of optimization problems in an optimal-
design paradigm

Similar to the terms that are used to describe a design task (in p. 39), we use the 
term ill-structured or inaccurate to describe an optimization problem that has no 
definitive and reliable objectives, constraints, and design variables. In other words, 
an ill-structured or inaccurate optimization problem here refers to an optimization 
problem that contains uncertain (qualitative and quantitative) objectives and 
constraints and/or uncertain design variables.

Optimization problems are usually ill-structured, given that they are just the 
approximation of design tasks and unavoidable inaccuracies exist. On one hand, 
the inaccuracies of the optimization problem can be inherited from the ill-defined 
nature of the design task. On the other hand, they can also come from other sources 
such as the approximation of hard-to-quantify criteria, the combination of multiple 
criteria into one, and the limited time for the possible refinements of the optimization 
problem, according to Meignan et al. (2015). In this sense, even though a design 
task is accurate or well-defined, the corresponding optimization problem can still be 
inaccurate or ill-structured. The ill-structured nature of optimization problems is not 
good for obtaining reliable design solutions.

 1.2 Problem statement

As explained above, current optimal-design paradigms can enhance Performance-
Based Building Design (PBBD) approaches to some degree. However, their limitations 
in supporting ill-structured optimization problems create a major barrier to obtaining 
reliable design solutions in conceptual architectural design. These limitations must 
be overcome to make more designers benefit from the enhanced Performance-Based 
Building Design (PBBD) approaches.
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The main problem addressed in this research is: in current Multi-Objective and 
Multi-Disciplinary Optimization (MOMDO) paradigms for ill-defined conceptual 
architectural design, there is often a lack of a way to ensure the achievement of a 
reliable optimization problem, which hinders reliable design solutions despite the 
use of advanced optimization algorithms.

An important reason for this problem is that the potentials of Optimization Problem 
Re-Formulation (OPF), more precisely, knowledge-supported, dynamic, and 
interactive re-formulation Optimization Problem Re-Formulation (Re-OPF), have 
not been fully explored. For many architects and engineers who follow optimal-
design paradigms, they tend to just focus on Optimization Problem Solving (OPS) 
without thoroughly discussing the reliability of the optimization problems in the first 
place. This obviously leads to a high risk of getting unreliable design solutions. For 
those who implement limited Optimization Problem Re-Formulation (Re-OPF), they 
tend to shrink objective space and design space to exclude existing areas, rather 
than expand these spaces to include new and unexplored areas. This may prevent 
them from getting more reliable and more divergent design solutions. 

This problem is relevant for various building types, particularly for buildings like 
indoor sports halls (which are selected as an application field in this research). This 
type of buildings differs from other building types primarily by its multifunctional 
purposes and large-span space. It is often complex in terms of both performance 
requirements and design concepts. The performance requirements can come from 
multiple disciplines, including but not limited to sightline, seat number, clear height, 
visual and thermal comfort, structural safety and serviceability, embodied and 
operational energy. The design concepts proposed for handling these requirements 
can involve complex geometry. This complexity raises significant challenges for the 
conceptual design of indoor sports halls. In this design phase, relevant performance 
requirements and promising design concepts are not clear (i.e., the design task is 
ill-defined). Thus, the optimization problem initially formulated (from the ill-defined 
design task) is probably not reliable, which needs to be re-formulated and improved.

The issue regarding software workflows should also be addressed to help solve the 
main problem. According to RoboDK (2019), a software workflow refers to “the 
definition, execution, and automation of software processes where tasks, information 
or documents are passed from one program to another for action, according to a set 
of procedural rules”. Most of the existing software workflows have not been designed 
for supporting Optimization Problem Re-Formulation (Re-OPF). Thus, they often have 
limitations in offering functions that are important for the re-formulation, such as 
user-friendly parametric geometric modeling, useful sampling algorithms, and handy 
post-processing tools.
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 1.3 Research goals

This research aims to achieve the main goal (Section 1.3.1) and several sub-goals 
that are directly or indirectly associated with the main goal (Section 1.3.2).

 1.3.1 Main goal

The main goal of this research is: to develop a Multi-Objective and Multi-
Disciplinary Optimization method suitable for use in ill-defined conceptual 
architectural design, by leveraging information and knowledge extraction to 
support dynamic and interactive Optimization Problem Re-Formulation (Re-OPF).

It is not the goal of this research to develop a rigid method that fully automates 
the design process and fully delegates human creativity to computational 
procedures. Instead, this research intends to develop a flexible method that partially 
automates the design process and considerably enhances human creativity through 
computational techniques. Such flexibility is desired to enable the method to adapt 
to different design contexts, and it can be derived from dynamic and interactive re-
formulation.

 1.3.2 Sub-goals

The main goal of this research is decomposed into four groups of sub-goals. The 
grouping of the sub-goals is based on their relations with the main goal.

The sub-goals of the first group are concerned with the theoretical framework of this 
research, and help achieve the main goal, namely:

1 To ascertain a way that can help to achieving a reliable design task and a reliable 
optimization problem and identify the general state of optimal-design methods in 
supporting this way.

2 To identify the state of the art of Multi-Objective Optimization (MOO) design methods, 
software workflows, and application to the conceptual design of sports buildings.
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The sub-goal of the second group is concerned with an optimal-design method, and 
is directly associated with the main goal, namely:

3 To develop an optimal-design method that enables information and knowledge 
extraction and hence dynamic and interactive Optimization Problem Re-Formulation 
(Re-OPF).

The sub-goal of the third group is concerned with a software workflow, and helps 
achieve the main goal, namely:

4 To establish a software workflow that can support the implementation of the above 
optimal-design method.

The sub-goal of the fourth group is concerned with case studies, and helps achieve 
the main goal, namely:

5 To provide case studies that can be used to establish the validity of the above 
optimal-design method.

 1.4 Research questions

This research raises the main question (Section 1.4.1) and several sub-questions 
that are directly or indirectly associated with the main question (Section 1.4.2).

 1.4.1 Main question

The main question of this research is: how to assist architects and engineers 
to extract useful information and knowledge to support dynamic and 
interactive Optimization Problem Re-Formulation (Re-OPF) during ill-defined 
conceptual design.
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 1.4.2 Sub-questions

The main question of this research is decomposed into four groups of sub-
questions. The grouping of the sub-questions is based on their relationship with the 
main question.

The sub-questions of the first group are concerned with the theoretical framework of 
this research (Chapter 2), and help address the main question, namely:

1 How to improve the reliability of an design task and an optimization problem, and to 
what extent do current optimal-design methods deal with this issue?

2 To what extent: (1) is dynamic and interactive Optimization Problem Re-Formulation 
(Re-OPF) supported? (2) are necessary computational techniques provided? (3) are 
optimal-design methods applied to the conceptual design of sports buildings?

The sub-question of the second group is concerned with the proposed 
optimal-design method (Chapter 3), and is directly associated with the main 
question, namely:

3 How to arrange actions and adopt necessary computational techniques for the 
proposed optimal-design method?

The sub-question of the third group is concerned with the proposed software 
workflow (Chapter 4), and helps address the main question, namely:

4 How to select software tools and integrate them seamlessly into the proposed 
software workflow?

The sub-question of the fourth group is concerned with the case studies 
(Chapters 5 and 6), and helps address the main question, namely:

5 How to demonstrate the use of the proposed optimal-design method and verify its 
benefits and associated affecting factors through case studies concerning indoor 
sports halls?
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 1.5 Research outputs

 1.5.1 Main output

The main output of this research is: a Multi-Objective and Multi-Disciplinary 
Optimization (MOMDO) method suitable for use in ill-defined conceptual 
architectural design. This method incorporates knowledge-supported, dynamic and 
interactive Optimization Problem Re-Formulation (Re-OPF). The incorporation of 
such re-formulation is the main innovation of this method, which differentiates this 
method from other methods in the field of architectural design optimization.

This method consists of three phases:

 – Phase-I: Optimization Problem Initial-Formulation (Initial-OPF);

 – Phase-II: Optimization Problem Re-Formulation (Re-OPF);

 – Phase-III: Optimization Problem Solving (OPS).

Moreover, this method contains two subtypes that differ from each other in the way 
of the re-formulation:

 – Subtype-I: Non-dynamic, Interactive Re-formulation method;

 – Subtype-II: Dynamic, Interactive Re-formulation method.

The Subtype-I method (i.e., non-dynamic method) includes one re-formulation 
iteration. It is more suitable for the design context where the main purpose is to 
reduce existing design possibilities (i.e., shrink exploration space), such as the 
circumstance in the relatively late sub-phase of conceptual architectural design.

The Subtype-II method (i.e., dynamic method) includes multiple re-formulation 
iterations. It is more suitable for the design context where the main purpose is 
to spark new design possibilities (i.e., expand exploration space), such as the 
circumstance in the relatively early sub-phase of conceptual architectural design.
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 1.5.2 Secondary output

The secondary output of this research is: a software workflow developed to support 
the implementation of the proposed method. This workflow integrates McNeel’s 
Grasshopper, ESTECO’s modeFRONTIER, and simulation software tools Daysim, 
EnergyPlus, and Karamba3D (that are embedded in Grasshopper).

 1.6 Research methodology

In general, research methodology is a way to systematically solve the research 
problem. It is not only concerned with specific methods or techniques that are used 
to perform research operations, but also with the steps or processes for carrying out 
the research (Kothari, 2004).

This research adopted a three-stage process. The three research stages (i.e., 
Stage 1 – Stage 3) correspond to the three main parts of the thesis (i.e., theoretical 
framework, method and workflow development, and case studies) respectively, as 
illustrated in FIG.1.5. In these research stages, different research tasks were carried 
out by using different methods or techniques, as described below.
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Stage 1 - theoretical framework (Chapter 2)

Stage 1 aimed to identify research problems, and define research goals and 
questions. More specifically, this stage helps to have an overall picture of 
conceptual architectural design and performative computational design and further 
understanding of state-of-the-art Multi-Objective Optimization (MOO) design 
methods, software workflows, and applications. This information is useful for guiding 
the consequent development of the research. For this, systematic literature reviews 
and relevant interviews were conducted.

First, the theories of conceptual architectural design and performative computational 
design were reviewed, to know a potential means to improve the reliability of an 
design task and an optimization problem, and to understand the extent these 
potential means were discussed in existing optimal-design methods. Then, Multi-
Objective Optimization (MOO) design methods, software workflows, and applications 
were further reviewed, to understand the extent (1) dynamic and interactive 
Optimization Problem Re-Formulation (Re-OPF) were implemented, (2) necessary 
computational techniques were provided, and (3) optimal-design methods were 
applied to the conceptual design of sports buildings. Moreover, interviews concerning 
the above topics were also held with experts from the fields of architectural design, 
engineering design, and computational design.

Stage 2 - method and workflow development (Chapters 3 and 4)

Stage 2 aimed to create a desired optimal-design method and software workflow. 
For this, interdisciplinary research was conducted, which involves theories, concepts, 
techniques, and tools not only from architecture and building engineering disciplines, 
but also from statistics, computer science, and software engineering disciplines.

Based on the previous theoretical framework, a promising direction for developing 
the method was set. Following this direction, the method was proposed. It 
incorporated knowledge-supported, dynamic and interactive Optimization Problem 
Re-Formulation (Re-OPF). According to different ways of the re-formulation, it was 
subdivided into two subtypes. The second subtype was derived by further extending 
the first subtype. The main purpose for distinguishing these two subtypes was to 
improve the flexibility of the method to accommodate different design contexts. 
These two subtypes were continuously adjusted based on the feedback of some 
simplified tests during their development processes. Moreover, computational 
techniques were a necessary complement to the method; they were adopted for 
supporting relevant actions of the method.
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To provide computational techniques necessary for the method, a software workflow 
was needed. Based on the previous theoretical framework, a promising direction 
for developing the workflow was set. Following this direction, the workflow was 
developed. It integrated McNeel’s Grasshopper, ESTECO’s modeFRONTIER, and 
simulation software tools Daysim, EnergyPlus, and Karamba3D (that were embedded 
in Grasshopper). The integration relied on a newly developed integration plug-in 
called Grasshopper-modeFRONTIER (Gh-mF) node. The development of this node 
was based on the collaboration between the Chair of Design Informatics at TU Delft 
and ESTECO SpA. The author of the thesis participated in the development process 
together with ESTECO’s interdisciplinary team. For creating the node, the author 
specified the desired software workflow as a whole, implemented relevant functions 
in Grasshopper, and engaged in brainstorming ideas for the software integration; for 
verifying the node, the author ran some internal tests and helped coordinate external 
testing activities like workshops. The development went through several rounds, thus 
producing at least two work-in-progress versions of the node; the second version led 
to the final node available in modeFRONTIER.

Stage 3 - case studies (Chapters 5 and 6)

Stage 3 aimed to demonstrate the use of the proposed method and verify the 
benefits and associated affecting factors. For this, two case studies concerning 
indoor sports halls were conducted, with the aid of the proposed software workflow 
and integration plug-in.

The two case studies were selected primarily because they were complementary in 
terms of design phases. Case Study I focused on the relatively late sub-phase of the 
conceptual design where convergent thinking is often highlighted or the number of 
parameters is usually high. In contrast, Case Study II focused on the relatively early 
sub-phase of the conceptual design where divergent thinking is often highlighted or 
the number of parameters is relatively low.

Given the above design contexts, the two subtypes of the proposed method were 
applied to the two case studies respectively. Case Study I demonstrated the use 
of the Subtype-I method (i.e., non-dynamic method), with a focus on a one-time 
re-formulation process that concerns mainly removing existing variables (i.e., 
refining an existing concept convergently). Case Study II demonstrated the use of 
the Subtype-II method (i.e., dynamic method), with a focus on a three-time re-
formulation process that concerns mainly adding new variables (i.e., enriching new 
concepts divergently).
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At the end of each case study, the benefits of adopting the related subtype method 
and the factors affecting its behaviors were verified internally by the author of the 
thesis using comparative analysis. In addition, reflections on each case study were 
conducted, which helped further the understanding of the related subtype method and 
provide valuable feedback about possible extensions or applications of the method.

A series of Journal Articles (i.e., JA1-JA2) and Conference Papers (i.e., CP1-CP5) in 
relation to this research have been published, as listed below:

 – JA1: Yang, D., Ren, S., Turrin, M., Sariyildiz, S., & Sun, Y. (2018). Multi-disciplinary 
and multi-objective optimization problem re-formulation in computational 
design exploration: A case of conceptual sports building design. Automation in 
Construction, 92, 242-269. DOI: https://doi.org/10.1016/j.autcon.2018.03.023.

 – JA2: Yang, D., Di Stefano, D., Turrin, M., Sariyildiz, S., & Sun, Y. (2020). Dynamic and 
interactive re-formulation of multi-objective optimization problems for conceptual 
architectural design exploration. Automation in Construction, 118, 103251. DOI: 
https://doi.org/10.1016/j.autcon.2020.103251.

 – CP1: Yang, D., Sun, Y., Turrin, M., Buelow, P. V., & Paul, J. (2015). Multi-objective 
and multidisciplinary design optimization of large sports building envelopes: a case 
study. In: Proceedings of IASS Annual Symposia, IASS 2015 Amsterdam Symposium: 
Future Visions – Computational Design (pp. 1-14). IASS. ISSN: 2518-6582.

 – CP2: Yang, D., Turrin, M., Sariyildiz, S., & Sun, Y. (2015). Sports building envelope 
optimization using multi-objective multidisciplinary design optimization (M-MDO) 
techniques: Case of indoor sports building project in China. In: 2015 IEEE Congress 
on Evolutionary Computation (CEC) (pp. 2269-2278). IEEE, Piscataway. ISBN: 978-
1-4799-7492-4.

 – CP3: Yang, D., Sun, Y., di Stefano, D., & Turrin, M. (2017). A computational design 
exploration platform supporting the formulation of design concepts. In: M. Turrin, B. 
Peters, W. O’Brien, R. Stouffs, & T. Dogan (Eds.), 2017 Proceedings of the Symposium 
on Simulation for Architecture and Urban Design (pp. 35-42). The Society for 
Modeling and Simulation International, San Diego. ISBN: 978-1-365-88878-6.

 – CP4: Yang, D., Sun, Y., Sileryte, R., D’Aquilio, A., & Turrin, M. (2016a). Application of 
surrogate models for building envelope design exploration and optimization. In: R. 
Attar, A. Chronis, S. Hanna, & M. Turrin (Eds.), 2016 Proceedings of the Symposium 
on Simulation for Architecture and Urban Design (pp. 11-14). The Society for 
Modeling and Simulation International, San Diego. ISBN: 978-1-365-05872-1.
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 – CP5: Yang, D., Sun, Y., Di Stefano, D., Turrin, M., & Sariyildiz, S. (2016b). Impacts of 
problem scale and sampling strategy on surrogate model accuracy: An application 
of surrogate-based optimization in building design. In: 2016 IEEE congress on 
evolutionary computation (CEC) (pp. 4199-4207). IEEE, Piscataway. ISBN: 978-1-
5090-0623-6.

These articles and papers are related to different parts of the thesis, as illustrated 
in FIG.1.5. Each of the journal articles relates to all three main parts of the thesis. 
The conference paper CP1 mainly relates to software workflow development. The 
conference papers CP2-CP3 mainly relate to the two case studies. The conference 
papers CP4-CP5 relate to the use of surrogate-based optimization, which has been 
considered a valuable direction for future research at the end of the thesis.

 1.7 Research relevance

 1.7.1 Scientific relevance

The scientific contribution of this research lies in expanding knowledge about 
performative computational design in general. Specifically, it relates to a new Multi-
Objective and Multi-Disciplinary Optimization (MOMDO) method proposed for use in 
ill-defined conceptual architectural design.

This research generates knowledge about a new perspective for dealing with 
ill-structured optimization problems (i.e., incorporating knowledge-supported, 
dynamic and interactive Optimization Problem Re-Formulation in optimal-design 
methods). First, the method based on this knowledge can offer a way to help the 
achievement of a more reliable optimization problem and hence more reliable design 
solutions. Second, this method can be used to deal with different types of design 
tasks. The Subtype-I method (i.e., non-dynamic method) can suit the need of 
refining an existing concept convergently, while the Subtype-II method (i.e., dynamic 
method) can suit the need of exploring new concepts divergently. The both subtype 
methods are useful for improving the proximity, diversity and geometric variation 
appropriateness of Pareto fronts.
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 1.7.2 Societal relevance

Society, including building practitioners and the general public, can benefit from this 
research in different ways.

Building practitioners, especially architects and engineers, can make the best use of 
Performance-Based Building Design (PBBD) approaches with the aid of the proposed 
method and software workflow. The proposed method allows them to extract useful 
information and knowledge to support the re-formulation of optimization problems, 
and thus allows them to make more informed early decisions during conceptual 
architectural design. This is good for obtaining more reliable design solutions. 
Moreover, the proposed method and software workflow can also facilitate architects 
and engineers to work collaboratively in a multi-disciplinary design environment in 
an early design phase.

The general public, especially sports enthusiasts, can benefit from the sports halls 
designed by using the proposed method. The proposed method can help improve the 
overall performances of sports halls, namely finding the best compromise or balance 
between possibly conflicting performances such as architectural, daylight, thermal, 
energy, and structural performances. The improvement of these performances not 
only benefits the general public by providing pleasing buildings and saving resources 
but also benefits sports enthusiasts by offering high-performing sports facilities.
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2 Literature review
This chapter reviews relevant areas of architectural design optimization and forms 
the theoretical framework that can guide the development of an optimal-design 
method and a software workflow.

The chapter is structured as follows. First, it introduces the purposes of the literature 
review (Section 2.1). Then, it provides basic concepts and reviews relevant topics 
in two fields: conceptual architectural design (Section 2.2) and performative 
computational design (Section 2.3). Next, it further reviews studies on Multi-
Objective Optimization (MOO) design methods, software workflows, and applications 
respectively (Section 2.4, 2.5 and 2.6). Finally, it concludes by summarizing the main 
research results and providing concluding remarks (Section 2.7).

Sections 2.3-2.5 involve contents published in Journal Articles 1-2 (Yang et al., 2018; 
Yang et al., 2020).

 2.1 Introduction

The purposes of the literature review are multifold. First of all, the review of the two 
fields is to identify a potential means to achieve a reliable design task in ill-defined 
conceptual architectural design, a potential means to achieve a reliable optimization 
problem in optimal design, and relevant challenges. Then, the review of Multi-
Objective Optimization (MOO) design methods is to understand the state of the art in 
supporting dynamic and interactive Optimization Problem Re-Formulation (Re-OPF). 
Next, the review of Multi-Objective Optimization (MOO) software workflows is to 
understand the state of the art in software selection and integration. Last, the Multi-
Objective Optimization (MOO) application review is to understand the current trends 
in applying relevant design methods and software workflows to the conceptual 
design of indoor sports halls.
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 2.2 Conceptual architectural design

This section provides some different interpretations of conceptual design in different 
contexts (Section 2.2.1); then, it describes the importance of achieving a reliable 
design task in conceptual architectural design (Section 2.2.2); and last, it identifies a 
potential means to achieve a reliable design task (Section 2.2.3).

 2.2.1 Interpretations of conceptual design

There is no consensus definition of conceptual design. Conceptual design can be 
interpreted differently, as it has different forms and goals in different domains or 
from other perspectives (Horváth, 2004). Given this fact, it is worth being aware of 
some different interpretations.

Conceptual design in industrial design

According to Pahl et al. (2007), a typical industrial design process can consist of 
four phases: task clarification, conceptual design, embodiment design, and detail 
design. In their definition, the conceptual design phase refers to the process where 
the basic solution path is laid down via the elaboration of a solution principle 
also called a concept. Moreover, according to Ulrich and Eppinger (2012), a 
typical industrial design process can also consist of six phases: planning, concept 
development, system-level design, detail design, testing and refinement, and 
production ramp-up. In their definition, the concept development phase refers to 
the process where the needs of the target market are identified, alternative product 
concepts are generated and evaluated, and one or more concepts are selected for 
further development and testing.

Conceptual design in architectural design

According to the American Institute of Architects (2017), an architectural design 
process generally consists of five phases: schematic design, design development, 
construction documents, procurement, and construction administration. Besides, 
according to Fontan (2021), Harpster (2021), and Schneider (2018), a phase known 
as pre-design or programming can be also added before the schematic design phase. 
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To the definition of the American Institute of Architects (2017), the schematic design 
phase is the process aiming to develop a preliminary design that illustrates the scale 
and relationship of the building components; typical deliverables of this phase can 
include preliminary site plans, building plans, sections and elevations, study models, 
perspective sketches, digital representations, preliminary selections of major building 
systems and materials. Given that the schematic design phase is fairly conceptual by 
nature (Schneider, 2018), it is sometimes called a conceptual design phase where 
various concepts are explored and narrowed down to one preferred concept.

Conceptual design from other perspectives

In addition to the above interpretations based on the subdivision of design 
processes, conceptual design can be also interpreted from other perspectives. 
According to Horváth (2004), conceptual design can be interpreted as: “a creative 
problem-solving process, enabled by human knowledge, intuition, creativity and 
reasoning” from a methodological point of view; “a cognitive process, in which 
ideation, externalization, synthesis, and manipulation of design concepts take place 
in symbiosis in a short-term evolutionary process” from a cognitive point of view; 
or, “an iterative search process, in which designers gather, generate, represent, 
transform, manipulate, and communicate information and knowledge related to 
various domains of design concepts” from an information technology point of view.

 2.2.2 Importance of achieving a reliable design task

For conceptual architectural design, it is important to achieve a reliable design task. 
This is mainly due to the fact that achieving a reliable design task is a prerequisite to 
obtaining reliable design solutions (Eschenauer et al., 1992). However, a conceptual 
architectural design task is usually ill-defined or inaccurate. Thus, the inaccuracies 
of a design task should be reduced as much as possible.

 2.2.3 Means to achieve a reliable design task

Design task re-definition is a potential means to achieve a more reliable design task 
(see FIG.2.1). For a better understanding of this, it is helpful to know its definition 
first, and then go into more detail about its features.
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FIG. 2.1 Dynamic and interactive design task re-definition (revised from Maher et al., 1996; Maher and Poon, 1996; Dorst and 
Cross, 2001)

Note: P and S represent problem space (i.e., requirement space) and solution space (i.e., concept space) respectively; the dots 
represent knowledge extraction; and the changing sizes of the circles indicate the additive and subtractive re-definition of 
the space.

First, design task re-definition here refers to the re-definition of design requirements 
and concepts that constitute a design task. It can be considered as a design 
exploration (Smithers and Troxell, 1990; Navinchandra, 1991; Smithers, 1992; 
Jonas, 1993; Logan and Smithers, 1993; Smithers et al., 1994; Gero, 1994). More 
precisely, it can be seen as a phenomenon in design where problem space (i.e., 
requirement space) interacts and evolves with solution space (i.e., concept space) 
over time, namely the co-evolution of problem space and solution space (Maher et 
al., 1996; Maher and Poon, 1996; Dorst and Cross, 2001). Also, it can be seen as 
a situated process where designers interpret problems (i.e., design requirements), 
propose solutions (i.e., design concepts), and redefine the problems and solutions 
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(Hay et al, 2017). This re-definition makes it possible to shift problem space and 
solution space to include unexplored areas and/or exclude existing areas, thus 
facilitating to achieve a more reliable design task. As observed by Smith and Tjandra 
(1998) from their design experiments, the willingness to redefine a design task has a 
positive effect on the quality of a final design.

Then, design task re-definition is desired to possess the dynamic and interactive 
features. These features can help to leverage the full potential of the re-definition, as 
described in the following two sections.

 2.2.3.1 Dynamic design task re-definition

Dynamic design task re-definition refers to the re-definition that can continue for 
multiple iterations; while in contrast, non-dynamic design task re-definition refers to 
the re-definition that proceeds for only one iteration. The desire for dynamic design 
task re-definition stems from the need to continuously extract relevant knowledge, 
as described below.

The necessity to continuously extract knowledge about a 
design task

In conceptual design, it is necessary for designers to continuously extract new 
knowledge. Many precedent studies pointed out that design knowledge is often 
insufficient in conceptual design (Paulson Jr, 1976, Fabrycky and Blanchard, 1991; 
Fabrycky, 1994; Mavris et al., 1998; Mavris and DeLaurentis, 2000; CURT, 2004; 
Blanchard and Fabrycky, 2011). In this design phase, designers may have a limited 
understanding on what are the proper design requirements and concepts, and how 
they interact with each other; furthermore, their understanding of these questions 
may become more limited when the design requirements and concepts can be 
changed dynamically.

The shortcoming of knowledge is especially true in the conceptual design of complex 
buildings. This type of design usually involves many possibly conflicting performance 
requirements and competing geometric concepts. Thus, in such a context, it is very 
difficult for designers to fully grasp the above-mentioned knowledge, and to get 
closer to the true design task.
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The desire for dynamic design task re-definition

In conceptual design, dynamic design task re-definition is desired, for continuously 
extracting relevant knowledge. As illustrated in FIG.2.1, after defining the initial 
problem space (i.e., requirement space) and solution space (i.e., concept space), 
designers are allowed to re-define them in an iterative manner; previous spaces are 
continuously analyzed to acquire new knowledge, and in turn, the new knowledge 
is used to trigger further new re-defined spaces; such iterative re-definition 
process can continue, until the knowledge obtained has become insignificant, or, 
the improvement of designers’ knowledge cannot warrant further re-definition. 
Thus, dynamic design task re-definition is essentially a continuous human learning 
process or knowledge extraction process where designers can gradually acquire new 
knowledge on what are the proper design requirements and concepts, and how they 
interact with each other.

 2.2.3.2 Interactive design task re-definition

Interactive design task re-definition refers to the re-definition that can take 
advantage of the complementary capabilities of humans and computers; while in 
contrast, non-interactive design task re-definition refers to the re-definition that 
relies only on computer capabilities or human capabilities. The desire for interactive 
design task re-definition stems from the need to support quantitative and qualitative, 
and divergent and convergent design thinking, as described below.

The necessity to support quantitative and qualitative thinking

Both quantitative and qualitative thinking is necessary for architectural design. 
They can be known as hard and soft, technical and non-technical components 
(Sariyildiz, 2012), or rational and irrational, and objective and subjective 
components (Reisner-Cook, 2009) of architectural design. While there are many 
studies centered on quantitative aspects (e.g., those handling indoor environments, 
structural efficiency, energy efficiency), some other studies focus on qualitative 
aspects (e.g., those handling aesthetic, and formal expressions). For instance, 
Reisner-Cook (2009) focused on an aesthetic that he believed is still meager and 
simplistic; and Riccobono et al. (2013) focused on a contemporary architectural 
trend that is associated with formal expressions and known as Digital Expressionism.
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In this research, quantitative thinking refers to the consideration of technical 
requirements (e.g., climatic, structural, and energy requirements), which mainly 
relies on computational supports; qualitative thinking refers to the consideration 
of non-technical requirements (e.g., aesthetic, social, and cultural requirements), 
which mainly relies on human subjectivity. Both kinds of thinking need to be given 
proper degrees of attention in conceptual design, and their relative priority may vary 
depending on different design contexts.

This is also true in the conceptual design of complex buildings. In this type of design, 
quantitative thinking (or technical rationality) is important; but it does not mean 
that qualitative thinking (or aesthetic preference) is not important. For example, to 
peruse “green” buildings (that have fewer impacts on the environment and cost less 
to maintain), designers need to highlight technical rationality while in the meantime 
considering aesthetic preference, that is to consider aesthetic preference based on 
the premise of technical rationality, rather than the other way around.

The necessity to support divergent and convergent thinking

Both divergent and convergent thinking is necessary for design, especially in 
conceptual design. They can be known as divergent and convergent design stages 
(Jones, 1992; Cross, 2008), lateral and vertical design transformations (Meniru 
et al., 2003), or design concept generation and selection (Pugh, 1991; Pahl et 
al., 2007; Ulrich and Eppinger, 2012). From the perspective of an entire design 
process, Jones (1992) classified a design process into three stages: divergence 
(i.e., a stage to extend the boundary of a design task), transformation (i.e., a stage 
to turn a complex design task into a simple one by deciding what to emphasize or 
overlook), and convergence (i.e., a stage to gradually reduce uncertainties until 
only one of many possible design alternatives is left as the final solution); Cross 
(2008) considered that the overall trend of a design process is convergent, but it 
still contains deliberate divergent periods to widen the search for new ideas; and 
Meniru et al. (2003) considered that there are two kinds of design transformations: 
lateral transformations (by introducing new ideas) and vertical transformations 
(by refining existing ideas). When particularly focusing on conceptual design, Pugh 
(1991) considered that conceptual design includes concept addition and reduction 
in an alternating way until one or a small number of final concepts are left; Pahl et 
al. (2007) considered that conceptual design includes concept generation, concept 
evaluation, and concept selection; similarly, Ulrich and Eppinger (2012) considered 
that conceptual design includes concept generation (i.e., a divergent process of 
generating alternative concepts) and concept selection (i.e., a convergent process of 
selecting promising concepts).
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In this research, divergent thinking refers to the enrichment of new concepts (i.e., 
divergent concept enrichment) for which human subjectivity plays an important role; 
convergent thinking refers to the refinement of existing concepts (i.e., convergent 
concept refinement) for which computational supports are particularly helpful. Both 
kinds of thinking need to be given proper degrees of attention, and their relative 
priority may vary depending on different design contexts.

This is also true in the conceptual design of complex buildings. In this type of design, 
divergent thinking is often encouraged especially in the relatively early phase; while 
convergent thinking is conducted in the relatively late phase. Generating a wide 
range of concepts (i.e., divergent thinking) is helpful to prevent overlooking valuable 
concepts; while evaluating and selecting these concepts (i.e., convergent thinking) 
are useful for restricting their number from getting too large to allow meaningful 
considerations (Liu et al., 2003). Nevertheless, convergent thinking is sometimes 
prioritized. As observed by Ullman et al. (1988), Rowe (1991), Ball et al. (1994), 
designers may focus on one concept only; even when severe problems have been 
found in the concept, designers may prefer to apply patches to make the concept 
work rather than to reject it and develop a new one.

The desire for interactive design task re-definition

In conceptual design, interactive design task re-definition is desired, for supporting 
quantitative and qualitative, and divergent and convergent design thinking. As 
illustrated in FIG.2.1, the re-definition follows an alternating additive and subtractive 
process where the problem space (i.e., requirement space) and solution space (i.e., 
concept space) can be enlarged or shrunk. This process represents the support of 
quantitative and qualitative, and divergent and convergent design thinking. Both 
humans and computers can play an active role in supporting such design thinking. 
Thus, interactive design task re-definition is essentially a process to expand the 
variety of ways of thinking.
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 2.3 Performative computational design

This section provides some different interpretations of a performance approach 
at different times (Section 2.3.1); then, it describes the importance of achieving a 
reliable optimization problem in optimal design (Section 2.3.2); next, it identifies 
a potential means to achieve a reliable optimization problem (Section 2.3.3); and 
last, it preliminarily reviews optimal-design methods with a focus on dynamic and 
interactive Optimization Problem Re-Formulation (Re-OPF).

 2.3.1 Interpretations of a performance approach

There is no consensus definition of a performance approach. A performance 
approach can be interpreted differently, as it evolves and acquires new meanings 
over time. Given this fact, it is worth being aware of some different interpretations.

A performance approach in ancient times

The performance approach in buildings is not new, and it can be traced back to 
ancient times. Early evidence of this approach includes but is not limited to the 
statements in ancient building regulations and architectural books and the practical 
examples of ancient buildings.

The performance approach has been reflected in the Code of Hammurabi and the 
Ten Books on Architecture (Gross, 1996). First, in the Code of Hammurabi, the 
performance-related statement relates to structural safety, namely: “Article 229: 
If a builder builds a house for someone and does not construct it properly, and the 
house which he built falls in and kills its owner, then that builder shall be put to 
death” (King, 2004). This statement does not prescribe the means of building, such 
as the thickness of walls, the sizes, and the materials of structural members. Instead, 
it addresses the final result, that is, the house should not collapse and kill anybody. 
Moreover, in the Ten Books on Architecture, the performance-related statement 
concerns more than just structural aspects. Vitruvius affirmed three fundamental 
prerequisites for a successful piece of architecture: “firmitas, utilitas, venustas” 
which are rendered in English as “firmness, utility, beauty” (Marconi, 2015). In both 
statements, user requirements for controlling the quality of buildings were given in 
the form of performance.
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Images source: 
Flying buttresses, Ching, F. D. (2011). A visual dictionary of architecture. John Wiley & Sons; 
Masouleh village, https://commons.wikimedia.org/wiki/File:Masouleh.jpg;
Kandovan village, https://commons.wikimedia.org/wiki/File:Village_troglodyte_kandovan_iran.jpg;
Siheyuan, https://www.wallpaper.com/architecture/folding-courtyard-house-archstudio-china;
Dai-zhulou, https://www.re-thinkingthefuture.com/architectural-styles/a2171-vernacular-architecture-styles-of-china/;
Yaodong, https://www.sohu.com/a/280617583_100257837;
Kaiping Diaolou, https://commons.wikimedia.org/wiki/File:KaipingDiaolou.jpg;
Fujian Tulou, https://commons.wikimedia.org/wiki/File:Hekeng_-_view_from_the_lookout_-_DSCF3048.JPG.

FIG. 2.2 Performative thinking in ancient buildings

The performance approach has also been reflected in ancient buildings around the 
world, as shown in FIG.2.2. These buildings include not only those designed by 
professional architects (i.e., architect-designed buildings), but also those made by 
people in tribal, folk, peasant, and popular societies where an architect, or specialist 
designer, is not employed (i.e., vernacular buildings) (Oliver, 2006). First, one kind 
of example that reflect performative thinking is the “flying buttresses” of Gothic 
churches. The form of flying buttresses was a result of performative considerations, 
including structural and spiritual considerations (Kanaani, 2015). Specifically, 
the form was designed to carry the lateral forces of the vault away from the upper 
walls towards the external vertical columns, and meanwhile to admit more daylight 
and create slender facade elements (because visual impressions of lightness and 
verticality are deemed respect for heaven). Moreover, other examples that reflect 
performative thinking are vernacular dwellings. The forms of the dwellings are 
usually performative responses to their local conditions, namely local climate, 
materials, tradition, etc. (Kanaani, 2015). Specifically, some of the dwellings respond 
to their climatic conditions, such as mud-caved houses “Yaodong”, courtyard houses 
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“Siheyuan”, stilt houses “Dai-zhulou” in different climate zones of China; earth 
houses in Masouleh village, rock-caved houses in Kandovan village, wind-catchers in 
the city of Yazd in Iran. Some of the dwellings respond to their historical conditions, 
such as earth houses “Fujian Tulou” and tower houses “Kaiping Diaolou” in China, 
which were built by prioritizing defense requirements.

A performance approach in modern times

The performance approach in buildings has been formally developed since the 
early 20th century. The development of this approach has provided an important 
theoretical foundation for its further development.

An influential definition of the performance approach is provided by the CIB Working 
Commission W60, namely: “the performance approach is, first and foremost, the 
practice of thinking and working in terms of ends rather than means. It is concerned 
with what a building or building product is required to do, and not with prescribing 
how it is to be constructed” (Gibson, 1982). This approach can be applied in the 
forms of performance-based building codes and performance-based building design. 
Many countries worldwide have committed to developing performance-based building 
codes during the modern development period (Gross, 1996; Szigeti and Davis, 2005). 
According to the U.S. Building Code Committee (1925): “whenever possible, 
requirements should be stated in terms of performance … rather than in dimensions, 
detailed methods, or specific materials”. The development of performance-based 
building codes can promote the application of performance-based building design, 
such as performance-based seismic design, or fire safety design.

The performance approach can overcome a major drawback of a traditional 
prescriptive approach. More precisely, it can be used to generate more innovative 
designs, at the cost of increasing implementation complexity. In the prescriptive 
approach, proposed designs just need to comply with prescriptive requirements or 
codes which describe the “means”, and no performance assessment is needed. This 
can make the prescriptive approach relatively simpler to implement (Becker, 2008) 
but result in a major drawback - stifling design innovation (Szigeti and Davis, 2005). 
Differently, in the performance approach, proposed designs need to meet performance 
requirements or codes which describe the “ends”, and a performance assessment 
is required. This can result in more innovative designs (Hien et al., 2000) but make 
the performance approach relatively more complex to implement (Becker, 2008). In 
addition, the performance approach has other advantages as well, such as facilitating 
the satisfaction of user needs, facilitating communication among stakeholders, and 
facilitating international trade in building products. (Hattis and Becker, 2001).
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The performance approach is especially meaningful for complex projects than 
for simple projects, given the following facts. For simple projects (e.g., those with 
regular shapes and common size elements), there are usually many well-proven 
technologies available; thus, it is possible to use the prescriptive approach that is 
faster, less costly, and more reliable for ensuring acceptable levels of performance 
(Becker, 2008). For complex projects (e.g., those with irregular shapes and oversize 
elements), innovations and optimal solutions are usually their main concerns; thus, 
it is indispensable to use the performance approach that allows to test of more 
innovative options and has more chances to reach optimal levels of performance 
(Becker, 2008). In fact, it is not likely to use the performance approach or the 
prescriptive approach individually in many cases. In other words, the use of the 
performance approach does not preclude the use of the prescriptive approach; it is 
often better to blend these two approaches, given their complementary capabilities 
(Szigeti and Davis, 2005; Huovila et al., 2018).

A performance approach in recent times

The performance approach in buildings has received more attention with the rising 
popularity of computational methods in recent decades, thus it is also known as 
performance-based computational design. A recent trend is to apply this approach 
to conceptual architectural design.

The performance approach can be defined differently by highlighting different 
aspects of computational or digital support. For instance, it can be defined as: 
“a digital architectural design approach in which broadly understood building 
performance is a guiding design principle on a par with or above form-making,” 
and termed “performative architecture” (Kolarevic, 2003a; Kolarevic, 2004; 
Kolarevic, 2005). It aims to shift the emphasis: from form-making to form-finding 
(Kolarevic, 2003b); or, from an architecture purely based on visual concerns to an 
architecture justified by its performance (Leach, 2009). Moreover, Malkawi (2005) 
considered that the performance approach can be supported by digital simulation 
tools, optimization, and partial automation, which is termed “performance-driven 
design.” It aims to shift the conventional use of simulation tools from analysis only 
to analysis and synthesis (Malkawi, 2005). Oxman (2008a; 2008b) considered 
that the performance approach can be supported by evaluative simulation, digital 
form generation, and modification, which is termed “performative design.” It 
aims to shift from a design paradigm externally controlled by human designer’s 
formal manipulative skills to that internally informed by computer’s evaluative and 
simulation processes (Oxman, 2008a; Oxman, 2008b).
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The performance approach has been increasingly applied to the conceptual design 
of contemporary architecture. It has become a prevailing paradigm; many designs 
associated with digital architecture can reflect, or partially reflect, its application 
(Oxman et al, 2007). Some famous example projects that apply this approach are 
shown in FIG.2.3. For the Swiss RE Building (2004), the curved overall shape and the 
façade structural framing were designed based on wind performance simulations, 
to reduce the wind impact on the building’s perimeter and the nearby street. For 
the Greater London Authority Headquarters (2002), the inclined overall shape was 
designed based on energy performance simulation; that is, the building surface 
exposed to direct sunlight is minimized, to reduce energy use. For the Kunsthaus 
Graz (2003) and the Beijing Olympic Stadium (2008), the overall shape and the 
façade structural framing were adjusted based on structural performance simulation, 
to improve the structural performance.

Images source: 
Swiss RE Building, https://commons.wikimedia.org/wiki/File:30_St_Mary_Axe_from_Leadenhall_Street.jpg;
Greater London Authority Headquarters, https://commons.wikimedia.org/wiki/File:London_City_Hall.jpg;
Kunsthaus Graz, https://commons.wikimedia.org/wiki/File:Graz_Kunsthaus_vom_Schlossberg_20061126.jpg
Beijing Olympic Stadium, https://commons.wikimedia.org/wiki/File:Beijing_national_stadium.jpg.

Swiss RE 
Building

Greater London Authority 
Headquarters Kunsthaus Graz Beijing Olympic Stadium

FIG. 2.3 Example projects that apply performance-based computational design

 2.3.2 Importance of achieving a reliable optimization problem

For optimal design, it is important to achieve a reliable optimization problem. 
This is mainly because achieving a reliable optimization problem is a prerequisite 
to obtaining reliable optimal solutions. However, unavoidable inaccuracies or 
simplifications occur when constructing an optimization problem for a design task 
(Meignan et al., 2015). Thus, the inaccuracies of an optimization problem should be 
reduced as much as possible.
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 2.3.3 Means to achieve a reliable optimization problem

Optimization Problem Re-Formulation (Re-OPF) is a potential means to achieve a 
more reliable optimization problem. For a better understanding of this, it is helpful to 
know its definition first, and then go into more detail regarding its features.

First, Optimization Problem Re-Formulation (Re-OPF) here refers to the re-
formulation of objectives, constraints, and design variables that constitute an 
optimization problem. It can be seen as a response to design task re-definition 
(mentioned in Section 2.2.3). More precisely, once design requirements and concepts 
of a design task evolve during design exploration, the objectives and constraints 
used to describe the design requirements, and the design variables used to define 
the design concepts need to be adapted accordingly. This re-formulation makes it 
possible to shift objective space and design space to include unexplored areas and/
or exclude existing areas, thus facilitating to achieve a more reliable optimization 
problem. As stated by Arora (2016), re-formulating an optimization problem can 
help to avoid unrealistic solutions or impractical designs.

Then, Optimization Problem Re-Formulation (Re-OPF) is desired to possess dynamic 
and interactive features. These features can help to leverage the full potential of the 
re-formulation, as described in the following two sections.

 2.3.3.1 Dynamic optimization problem re-formulation

Dynamic Optimization Problem Re-Formulation (Re-OPF) refers to the re-formulation 
that can continue for multiple iterations; while in contrast, non-dynamic Optimization 
Problem Re-Formulation (Re-OPF) refers to the re-formulation that proceeds for only 
one iteration. The desire for dynamic Optimization Problem Re-Formulation (Re-OPF) 
stems from the need to continuously extract relevant knowledge, as described below.

The necessity to continuously extract knowledge about an 
optimization problem

In optimal design, it is necessary for designers to continuously extract new 
knowledge. Meignan et al. (2015) stated that an optimization problem is actually 
an approximation to a design task, namely that there is usually a discrepancy 
between an optimization problem and a design task. This discrepancy indicates 
the insufficiency of relevant knowledge. It is often the case that designers may 
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have a limited understanding on what are the proper performance objectives and 
constraints to describe design requirements, and what are the proper design 
variables to define design concepts; furthermore, their understanding of these 
questions may become even more limited, when the objectives, constraints, and 
design variables are going to change dynamically.

The shortcoming of knowledge is especially true in the optimal design of complex 
buildings. This type of design usually involves many possible choices of objectives, 
constraints, and design variables. Thus, in such a context, it is very difficult for 
designers to fully grasp the above-mentioned knowledge in one shot, and to 
correctly convert a design task into an optimization problem.

The desire for dynamic optimization problem re-formulation

In optimal design, dynamic Optimization Problem Re-Formulation (Re-OPF) is 
desired, for continuously extracting relevant knowledge. Such re-formulation 
follows a similar iterative process to dynamic design task re-definition (mentioned 
in Section 2.2.3.1). Thus, it is essentially a continuous human learning process 
or knowledge extraction process where designers can gradually improve their 
understanding of the proper performance objectives and constraints to describe 
design requirements, the proper design variables to define design concepts, and how 
the performance objectives and constraints interact with the design variables.

 2.3.3.2 Interactive optimization problem re-formulation

Interactive Optimization Problem Re-Formulation (Re-OPF) refers to the re-
formulation that can take advantage of the complementary capabilities of humans 
and computers; while in contrast, non-interactive Optimization Problem Re-
Formulation (Re-OPF) refers to the re-formulation that relies only on computer 
capabilities or human capabilities. The desire for interactive Optimization Problem 
Re-Formulation (Re-OPF) stems from the need to support quantitative and 
qualitative performance measures, and divergent and convergent design variables, 
as described below.

TOC



 76 Design as  Exploration

The necessity to support quantitative and qualitative 
performance measures

Both quantitative and qualitative performance measures are necessary for optimal 
design. They can be seen as a response to supporting quantitative and qualitative 
thinking (mentioned in Section 2.2.3.2). In this research, quantitative performance 
measures refer to those used to assess the achievement of technical requirements, 
while qualitative performance measures refer to those used to assess the 
achievement of non-technical requirements.

The necessity to support divergent and convergent 
design variables

Both divergent and convergent design variables are necessary for optimal design. 
They can be seen as a response to supporting divergent and convergent thinking 
(mentioned in Section 2.2.3.2). In this research, divergent design variables refer to 
those added to consideration for enriching new concepts or those whose domains 
are expanded, while convergent design variables refer to those removed from 
consideration for refining existing concepts or those whose domains are shrunk.

The desire for interactive optimization problem re-formulation

In optimal design, interactive Optimization Problem Re-Formulation (Re-OPF) is 
desired, for supporting quantitative and qualitative performance measures, and 
divergent and convergent design variables. The re-formulation also follows an 
alternating additive and subtractive process (similar to the interactive design task 
re-definition mentioned in Section 2.2.3.2). This process represents the support of 
quantitative and qualitative performance measures and divergent and convergent 
design variables. Both humans and computers can play an active role in supporting 
those performance measures and design variables. Thus, interactive Optimization 
Problem Re-Formulation (Re-OPF) is essentially a process to expand the variety of 
performance measures and design variables.
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 2.3.4 A preliminary review of optimal-design methods

A preliminary review of optimal-design methods is conducted in this section, to 
understand the general state of the art in supporting Optimization Problem Re-
Formulation (Re-OPF), especially dynamic and interactive re-formulation.

Optimal-design methods are highly useful for building design. They are not new to 
building engineering disciplines, because they have been applied in these disciplines 
for a long time (Arora, 1990). With the rapid progress of computer science in 
recent decades, they have been increasingly applied to different building disciplines 
and design phases (Evins, 2013; Nguyen et al., 2014; Huang and Niu, 2016), 
including conceptual architectural design (Østergård et al., 2016; Touloupaki and 
Theodosiou; 2017; Ekici et al., 2019).

Current optimal-design methods have rarely considered Optimization Problem 
Re-Formulation (Re-OPF). As stated by Bernal et al. (2015), designers can rapidly 
identify relevant aspects of a design task and constantly shift the direction of design 
development through re-definition but receive little or no computational support 
for such behavior. For instance, there is often a lack of Optimization Problem Re-
Formulation (Re-OPF). This is usually associated with an implicit and incorrect 
assumption, namely, an ill-defined conceptual architectural design task is incorrectly 
assumed as a well-defined design task where all objectives, constraints, and design 
variables are not replaceable and removable. Given this assumption, designers 
may just focus on searching for optimal solutions based on a fixed and probably 
premature optimization problem (due to the lack of discussing the reliability of 
the optimization problem). The absence of Optimization Problem Re-Formulation 
(Re-OPF) hinders designers from thinking outside of the box and expanding 
the exploration into vast possible regions beyond the original space. This is not 
beneficial for achieving a more reliable optimization problem and avoiding unrealistic 
solutions or impractical designs.

It is even rarer that current optimal-design methods have considered dynamic and 
interactive Optimization Problem Re-Formulation (Re-OPF). Related gaps can be 
described below.
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Lack of considering continuous knowledge extraction

Despite the necessity of continuously extracting relevant knowledge, current 
optimal-design methods have just begun to notice it. It was not until recently that 
the value of dynamic re-formulation in knowledge extraction was paid more attention 
to. As stated by Arora (2016), the process of developing a proper formulation for the 
optimal design of a practical problem is iterative in itself; in this iterative process, 
new knowledge can be extracted continuously to support the revision of the initial 
formulation. Nevertheless, this iterative process has not been widely considered in 
current optimal-design methods. This reflects the lack of dynamic re-formulation.

Lack of considering qualitative performance measures

Despite the necessity of supporting quantitative and qualitative performance 
measures, current optimal-design methods have rarely considered qualitative 
performance measures. As stated by Østergård et al. (2016), current optimal-design 
methods have an important drawback – the lack of qualitative measures which 
are critical for conceptual design. This can be associated with the fact that human 
subjectivity (e.g., human preferences, intuitions, and emotions that are important 
for supporting qualitative measures) is often excluded in optimal-design methods. 
The absence of human subjectivity is not beneficial for assessing non-technical 
performances; it results in that conceptual architectural design is erroneously 
treated as a process where qualitative matters are not considered as a necessity. 
This reflects the lack of iterative re-formulation.

Lack of considering divergent design variables

Despite the necessity of supporting divergent and convergent design variables, 
current optimal-design methods have rarely considered divergent design variables 
for supporting a divergent design process. As stated by Bernal et al. (2015), current 
optimal-design methods have a major challenge – supporting a divergent conceptual 
design process instead of a convergent one. This can be associated with the fact that 
human creativity (i.e., a divergent thinking style that can lead to creativity) is often 
ignored in optimal-design methods. The absence of human creativity is not beneficial 
for expanding the domains of design variables and adding new design variables; it 
results in that conceptual architectural design is erroneously treated as a process 
where divergent thinking is not considered as a necessity. This reflects the lack of 
iterative re-formulation.
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 2.4 Review of multi-objective optimization 
design methods

This section reviews relevant Multi-Objective Optimization (MOO) design methods. 
First, it specifies the scope of the review (Section 2.4.1); then, it presents the 
methods that are classified into four types (Section 2.4.2); and finally, it identifies the 
gaps of the methods (Section 2.4.3). This review has been updated as of April 2020.

 2.4.1 Scope of the review

Multi-Objective Optimization (MOO) design methods are the subject of this 
review. Recently, there are a growing number of Multi-Objective Optimization 
(MOO) design methods applied to conceptual architectural design (Østergård et 
al., 2016; Touloupaki and Theodosiou; 2017; Ekici et al., 2019). They adopt the 
following techniques to varying extents: parametric geometric modeling (Aish 
and Woodbury, 2005) and sampling algorithms for geometry generation; multi-
disciplinary simulation modeling (Hensen and Lamberts, 2011; Gaetani et al., 
2020) for performance analysis; Multi-Objective Optimization (MOO) algorithms 
(Andersson, 2000; Deb, 2014) for optimization; quantitative data analysis and 
qualitative data visualization for information and knowledge extraction. Among 
these techniques, data analysis is particularly important for supporting Optimization 
Problem Re-Formulation (Re-OPF). Here, data analysis refers to the process of 
studying a given data set in close detail to extract useful information; it differs 
from data analytics which is a more comprehensive term referring to a discipline 
that comprises the complete management of data, including collection, cleaning, 
organizing, storing, administering, and analysis of data (Sarangam, 2020).

This review covers Multi-Objective Optimization (MOO) design methods that can 
support Optimization Problem Re-Formulation (Re-OPF) in different ways, given the 
value of such re-formulation. The reviewed methods are presented in Appendix I and 
described below. Note that they are not limited to those developed for conceptual 
architectural design, due to the lack of relevant studies.
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 2.4.2 Types of multi-objective optimization design methods

According to whether or not Optimization Problem Re-Formulation (Re-OPF) is 
dynamic and interactive, the reviewed Multi-Objective Optimization (MOO) design 
methods are classified into four types (see FIG.2.4). This classification can help to 
understand the state of the art of methods in supporting Optimization Problem Re-
Formulation (Re-OPF).

Dynamic 
Re-OPF

Non-dynamic 
Re-OPF

Non-interactive Re-OPF

Interactive Re-OPF

2

43

1

Methods 
supporting

non-dynamic, 
interactive
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dynamic,
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Re-OPF
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interactive 
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Methods 
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non-dynamic, 
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Re-OPF

(i.e., one-time 
Re-OPF)

(i.e., multiple-time 
Re-OPF)

(i.e., Re-OPF with human involvement)

(i.e., Re-OPF without human involvement)

FIG. 2.4 Classification of the reviewed Multi-Objective Optimization (MOO) design methods (Yang et al., 2020)

 2.4.2.1 Type 1 methods incorporating non-dynamic and 
non-interactive Re-OPF

Type 1 methods incorporate non-dynamic and non-interactive re-formulation of 
an optimization problem (i.e., one-time re-formulation where qualitative objectives 
and divergent design variables are not considered). The necessity of allowing such 
re-formulation has been pointed out in the aerospace and automotive industries 
for nearly a decade. Agte et al. (2010) stated that it is necessary to include design 
space re-definition in optimization, given the fact that design requirements may 
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change over time and significant re-designs can occur at a later time. Similarly, 
Simpson and Martins (2011) considered that allowing the change of design variable 
sets can help to explore new regions of the design space and lead to better designs.

Regarding Type 1 methods, there are a few examples in the late phases of 
architectural design. Heiselberg et al. (2009)’s example, Shen and Tzempelikos 
(2013)’s example are two typical ones. In these examples, the original design 
space is refined based on sensitivity analysis results. That is, sensitivity analysis of 
multiple performance metrics to various design variables is conducted; then, the 
design variables are ranked according to their relative importance to each of the 
performance metrics. In this way, unimportant design variables are identified and 
screened out, thus refining the original design space. Given that design variables 
are removed once, qualitative objectives and divergent design variables are not 
considered, the above examples belong to Type 1 methods.

 2.4.2.2 Type 2 methods incorporating dynamic and non-interactive 
Re-OPF

Type 2 methods incorporate dynamic and non-interactive re-formulation of an 
optimization problem (i.e., multiple-time re-formulation where qualitative objectives 
and divergent design variables are not considered). The necessity of allowing such 
re-formulation has been noticed recently in the building industry. Arora (2016) 
stated that developing a proper formulation for a design optimization problem is 
an iterative process, namely the initial formulation often needs several adjustments 
before obtaining an acceptable one.

Regarding Type 2 methods, there are some examples but not in conceptual 
architectural design. These example methods, known as “dynamic Multi-Objective 
Optimization (MOO),” are a hot research topic in computer science (Raquel and 
Yao, 2013; Helbig and Engelbrecht, 2013; Azzouz et al., 2017). They are meant for 
solving Multi-Objective Optimization (MOO) problems which involve time-varying 
objectives, constraints and design variables, such as control problems, scheduling 
problems, and mechanical design problems. (Helbig and Engelbrecht, 2014). To 
solve these problems, the Multi-Objective Optimization (MOO) algorithms used 
should be able to track the changing Pareto-optimal fronts. These algorithms 
include at least two kinds: algorithms which solve a dynamic optimization problem 
without adapting the problems, as applied in Trabelsi et al. (2016)’s example; 
and algorithms which convert a dynamic optimization problem into multiple static 
optimization problems, as applied in Curtis et al. (2013)’s two examples. The latter 
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kind of algorithms indicates that a static optimization problem can be re-formulated 
iteratively by adding and removing objectives and design variables, and that the 
re-formulation can extend the exploration into a much larger space and avoid 
missing potentially better solutions. Given that quantitative objectives and/or design 
variables are re-formulated multiple times, qualitative objectives and divergent 
design variables are not considered, the above examples belong to Type 2 methods.

 2.4.2.3 Type 3 methods incorporating non-dynamic and interactive 
Re-OPF

Type 3 methods incorporate non-dynamic and interactive re-formulation of an 
optimization problem (i.e., one-time re-formulation where qualitative objectives and/
or divergent design variables are considered). The necessity of allowing such re-
formulation has been noticed in the building industry. Cichocka et al. (2017)’s survey 
among architects showed that 91% of the surveyed architects would like to influence 
optimization outcomes in a subjective way like subjectively selecting promising 
designs. This indicates that human-in-the-loop methods seem more appropriate in 
architectural design optimization. Brintrup et al. (2007) deemed that an optimization 
framework should be flexible enough to deal with changeable (qualitative and 
quantitative) objectives, constraints, and preferences. Mueller and Ochsendorf 
(2015) stated that an ideal computational approach should expose designers to a 
diverse range of alternatives which may inspire new goals and spark new ideas.

Regarding Type 3 methods, there are some examples in conceptual architectural 
design and other design disciplines. These example methods are known as 
“interactive evolutionary computation” which belongs to human-in-the-loop 
optimization methods. They often adopt human subjectivity to evaluate hard-to-
quantify qualitative performances (Takagi, 2001), such as the value or beauty of 
buildings that can be quickly captured through human observations (Graf, 1995; 
Graf 1996). They are versatile in handling changing definitions of qualitative 
objectives, because hard-coding qualitative influences is not necessary (Brintrup 
et al., 2007). The examples from Brintrup et al. (2007), Mueller and Ochsendorf 
(2015), and Turrin et al. (2011) are typical interactive evolutionary computation 
applied in conceptual architectural and structural design. In these examples, 
first, a single-objective optimization involving one quantitative objective is run, 
thus obtaining quantitative promising designs; then, human designers are asked 
to evaluate the qualitative performance of the obtained designs subjectively 
and select preferred ones for further optimization. In a situation that there is no 
further optimization, the original optimization problem can be seen as being re-
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formulated once by removing a quantitative objective and adding a qualitative 
objective. Differently, Barnum and Mattson (2010)’s example is a reverse method. 
In this example, first, a single-objective optimization involving one qualitative 
objective is run based on human subjective evaluation, thus obtaining a quantitative 
preference-based model; then, the original optimization problem is re-formulated 
by adding quantitative objectives; last, the re-formulated problem is run based on 
the preference-based model and other related physics-based models. Given that 
objectives are re-formulated once, qualitative objectives are considered, the above 
examples belong to Type 3 methods.

 2.4.2.4 Type 4 methods incorporating dynamic and interactive Re-OPF

Type 4 methods incorporate dynamic and interactive re-formulation of an 
optimization problem (i.e., multiple-time re-formulation where qualitative objectives 
and/or divergent design variables are considered). The necessity of allowing such 
re-formulation is rarely noticed in the building industry. Newton (2018) pointed 
out three limitations of Multi-Objective Optimization (MOO) design methods used 
in architectural design, namely, they are not designed for finding novel and diverse 
designs; they are not suitable for open-ended iterative design processes where 
design space and objective space may dynamically change; and they cannot bring 
designers into the loop in ways that stimulate the designers to be more creative. 
These limitations actually indicate the necessity of dynamic and interactive re-
formulation. Janssen (2015) suggested an adaptive-iterative design process that 
allows designers to re-define a design space dynamically and interactively.

Regarding Type 4 methods, there are very few examples in conceptual architectural 
design. Newton (2018)’s example, Kaushik and Janssen (2013)’s example are two 
valuable ones. In these two examples, it is through dynamic and interactive re-
formulation that the design processes are driven forward, and that the designs are 
made more complex and less abstract progressively; but such re-formulation is 
realized in different ways. In the former example, human designers engage in re-
defining qualitative objectives and devising divergent design variables; quantitative 
and qualitative objectives are added and/or removed two times; divergent design 
variables are added two times. In the latter example, human designers engage in 
devising divergent design variables but not in re-defining qualitative objectives; 
quantitative objectives are added once; divergent design variables are added and/
or removed three times. Given that objectives and/or design variables are re-
formulated multiple times, qualitative objectives and/or divergent design variables 
are considered, the above examples belong to Type 4 methods.
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 2.4.3 Gaps of multi-objective optimization design methods

According to the above review, there are a very small number of Multi-Objective 
Optimization (MOO) design methods that have incorporated dynamic and interactive 
Optimization Problem Re-Formulation (Re-OPF), in conceptual architectural 
design. Specifically, most of the reviewed methods have not incorporated such 
re-formulation (i.e., Type 1, Type 2 and Type 3 methods); while in contrast, only 
two of the reviewed methods have done so (i.e., Type 4 methods). However, even 
in the promising Type 4 methods (e.g., Newton’s, Kaushik and Janssen’s design 
method), there is still room for improvement, especially in terms of information and 
knowledge extraction.

A possible reason for the above problem relates to an implicit and incorrect 
assumption, that is, an ill-defined task in conceptual architectural design has often 
been incorrectly assumed as a well-defined task. This assumption indicates that 
all given design requirements and concepts, and all given objectives, constraints 
and design variables are not replaceable and removable. Under this assumption, 
designers usually go quickly through the Optimization Problem Formulation (OPF) 
phase without thoroughly discussing the reliability of the given optimization 
problem, and then just focus on searching for optimal solutions based on the fixed 
and probably premature optimization problem in the Optimization Problem Solving 
(OPS) phase. Thus, this assumption can lead to a high risk of obtaining meaningless 
design solutions.

Another possible reason can be the insufficient awareness on the potentials of 
information and knowledge extraction for optimal-design methods. In most of the 
previous optimal-design methods for conceptual architectural design, information 
and knowledge extraction is at most treated as a side topic. In this situation, 
designers may just perform simple data analysis by using limited statistical 
techniques (e.g., descriptive statistics) based only on optimal solutions, thus obtain 
limited knowledge. But, in fact, they could have performed more sophisticated data 
analysis by using advanced statistical techniques (i.e., beyond descriptive statistics) 
based on both optimal and non-optimal solutions (Turrin et al., 2011), thus obtain 
more knowledge.

In summary, it is necessary to establish a new Multi-Objective Optimization (MOO), 
especially Multi-Objective and Multi-Disciplinary Optimization (MOMDO), design 
method that can incorporate dynamic and interactive Optimization Problem 
Re-Formulation (Re-OPF) in a better manner. The method development will be 
elaborated in Chapter 3.
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 2.5 Review of multi-objective optimization 
software workflows

This section reviews relevant Multi-Objective Optimization (MOO) software workflows. 
First, it specifies the scope of the review (Section 2.5.1); then, it presents the 
software workflows that are classified into four types (Section 2.5.2); and finally, it 
identifies the gaps of the software workflows (Section 2.5.3). This review has been 
updated as of April 2020.

 2.5.1 Scope of the review

Multi-Objective Optimization (MOO) software workflows are the subject of this 
review. Currently, there are a growing number of Multi-Objective Optimization (MOO) 
software workflows available for conceptual architectural design. They can be 
developed by integrating different software using different integration approaches. 
Among possible options, Visual Programming (VP) software (Boshernitsan and 
Downes, 2004) and Process Integration and Design Optimization (PIDO) software 
(Flager et al., 2009a) are desired to be integrated, given their capabilities in offering 
computational techniques adopted by Multi-Objective Optimization (MOO) design 
methods. Here, Visual Programming (VP) software refers to a particular type of 
parametric geometric modeling software for architects who may not have knowledge 
of textual programming; and it has potential to offer user-friendly parametric 
geometric modeling and various types of multi-disciplinary simulation modeling. 
Moreover, Process Integration and Design Optimization (PIDO) software refers to a 
particular type of optimization software that was originally used in the aerospace 
industry and later tested in the building industry; and it has potential to offer 
various types of multi-disciplinary simulation modeling, Multi-Objective Optimization 
(MOO) algorithms, sampling algorithms, quantitative data analysis, and qualitative 
data visualization.

This review covers Multi-Objective Optimization (MOO) software workflows that 
can integrate Visual Programming (VP) software and Process Integration and 
Design Optimization (PIDO) software to varying extents, given the value of such 
software. The reviewed workflows are presented in Appendix II and described 
below. Note that they include those developed for conceptual architectural design 
but exclude those focusing on non-geometric parametric modeling and mono-

TOC



 86 Design as  Exploration

disciplinary simulation modeling, such as MultiOpt (Chantrelle et al., 2011), 
IDA-ICE+MATLAB (Hamdy et al., 2011), jEPlus+EA (Porritt et al., 2012), MOBO 
(Palonen et al., 2013).

 2.5.2 Types of multi-objective optimization software workflows

According to whether or not Visual Programming (VP) software and Process 
Integration and Design Optimization (PIDO) software are integrated, the reviewed 
Multi-Objective Optimization (MOO) software workflows are classified into four types 
(see FIG.2.5). This classification can help to understand the state of the art of the 
workflows in utilizing Visual Programming (VP) software and Process Integration and 
Design Optimization (PIDO) software.

Visual 
Programming

Non-Visual 
Programming

Non-Process Integration and Design Optimization

Process Integration and Design Optimization 

2

43

1

Tools 
integrating 
Non-VP,

PIDO 
programs
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VP, 
Non-PIDO 
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PIDO 
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Non-VP,

Non-PIDO 
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(i.e., Non-VP) (i.e., VP)

(i.e., PIDO)

(i.e., Non-PIDO)

FIG. 2.5 Classification of the reviewed Multi-Objective Optimization (MOO) software workflows
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 2.5.2.1 Type 1 workflows integrating Non-VP and Non-PIDO software

Type 1 workflows integrate Non-Visual Programming (Non-VP) software and Non-
Process Integration and Design Optimization (Non-PIDO) software. The integration 
approaches used include a model-based approach or a BIM file-based approach 
(Bernal et al., 2015). This type of software workflows generally offers less user-
friendly parametric geometric modeling, and less types of multi-disciplinary 
simulation modeling, Multi-Objective Optimization (MOO) algorithms, sampling 
algorithms, quantitative data analysis, and less ideal qualitative data visualization, as 
exemplified below.

Caldas (2001, 2006, 2008), Caldas and Norford (2002, 2003), and Wright et al. 
(2014)’s software workflows are typical examples of this type. Each of them offers 
textual programming (i.e., less user-friendly parametric geometric modeling), 
two types of simulation modeling, one type of Multi-Objective Optimization (MOO) 
algorithm, a simple sampling algorithm (i.e., random sampling), one type of 
quantitative data analysis (i.e., trade-off analysis), and separated data visualization 
(i.e., less ideal visualization that shows building geometries and simulation 
results separately).

Shea et al. (2006), Conti (2013), and Conti et al. (2015)’s software workflows 
are similar to the typical ones, except that each of them offers combined data 
visualization (i.e., more ideal visualization that shows building geometries and 
simulation results side-by-side simultaneously).

Gagne and Andersen (2010), Gerber and Lin (2012, 2014)’s software workflows 
are similar to the typical ones, except that each of them offers BIM modeling (i.e., a 
geometric modeling technique with limited parametric capabilities).

DesignBuilder software is also similar to the typical ones, except that it offers fast 
modeling (i.e., a geometric modeling technique with limited parametric capabilities), 
and a few more types of simulation modeling, sampling algorithms, and quantitative 
data analysis.
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 2.5.2.2 Type 2 workflows integrating VP and Non-PIDO software

Type 2 workflows integrate Visual Programming (VP) software and non-Process 
Integration and Design Optimization (Non-PIDO) software. The integration approach 
used is a custom system-to-system approach (Bernal et al., 2015). This type of 
software workflows generally offers more user-friendly parametric geometric 
modeling, more types of multi-disciplinary simulation modeling, less types of Multi-
Objective Optimization (MOO) algorithms, sampling algorithms, quantitative data 
analysis, and more ideal qualitative data visualization, as exemplified below.

Janssen et al. (2011), Janssen (2013, 2015), Von Buelow (2012, 2016), Vierlinger 
and Bollinger (2014), Negendahl and Nielsen (2015), Danhaive and Mueller (2015), 
Brown and Mueller (2016), and Brown et al. (2016)’s software workflows are similar 
examples of this type. Each of them offers visual programming, a few more types 
of simulation modeling, one or a few types of Multi-Objective Optimization (MOO) 
algorithms, a simple sampling algorithm, one or a few types of quantitative data 
analysis, and separated or combined data visualization.

 2.5.2.3 Type 3 workflows integrating non-VP and PIDO software

Type 3 workflows integrate Non-Visual Programming (Non-VP) software and Process 
Integration and Design Optimization (PIDO) software. The integration approach 
used is a BIM file-based approach (Bernal et al., 2015). This type of software 
workflows generally offers less user-friendly parametric geometric modeling, 
many types of multi-disciplinary simulation modeling, Multi-Objective Optimization 
(MOO) algorithms, sampling algorithms, quantitative data analysis, and more ideal 
qualitative data visualization, as exemplified below.

Flager et al. (2009b)’s software workflow is a typical example of this type. It offers 
BIM modeling, broad types of simulation modeling, Multi-Objective Optimization 
(MOO) algorithms, sampling algorithms, quantitative data analysis, combined 
data visualization.
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 2.5.2.4 Type 4 workflows integrating VP and PIDO software

Type 4 workflows integrate Visual Programming (VP) software and Process 
Integration and Design Optimization (PIDO) software. The integration approach used 
is a custom system-to-system approach (Bernal et al., 2015). This type of software 
workflows generally offers more user-friendly parametric geometric modeling, 
many types of multi-disciplinary simulation modeling, Multi-Objective Optimization 
(MOO) algorithms, sampling algorithms, quantitative data analysis, and more ideal 
qualitative data visualization, as exemplified below.

ESTECO’s earliest in-house workflow that integrates Grasshopper and 
modeFRONTIER is a typical example of this type. It offers visual programming, 
broad types of simulation modeling, Multi-Objective Optimization (MOO) algorithms, 
sampling algorithms, quantitative data analysis, combined data visualization.

 2.5.3 Gaps of multi-objective optimization software workflows

According to the above review, there are a very small number of Multi-Objective 
Optimization (MOO) software workflows that have integrated Visual Programming 
(VP) software and Process Integration and Design Optimization (PIDO) software, in 
conceptual architectural design. Specifically, most of the reviewed workflows have 
not integrated such software (i.e., Type 1, Type 2 and Type 3 workflows); while in 
contrast, only one of the reviewed workflows have done so (i.e., Type 4 workflow). 
However, even in the promising Type 4 workflow (i.e., ESTECO’s earliest in-house 
workflow that integrates Grasshopper and modeFRONTIER), there is still room for 
improvement, especially in terms of software integration (i.e., the integration of 
Grasshopper and modeFRONTIER).

In summary, it is necessary to establish an improved Multi-Objective Optimization 
(MOO), especially Multi-Objective and Multi-Disciplinary Optimization (MOMDO), 
software workflow where Grasshopper and modeFRONTIER are integrated in a better 
manner. The workflow development will be elaborated in Chapter 4.
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 2.6 Review of an application field – 
sports buildings

This section reviews a valuable application field: the conceptual design of sports 
buildings, especially indoor sports halls. First, it specifies the scope of the review 
(Section 2.6.1); then, it identifies the gaps of conceptual sports building design 
(Section 2.6.2).

 2.6.1 Scope of the review

Multi-Objective Optimization (MOO) applications to the conceptual design of indoor 
sports halls are the main subject of this review. Indoor sports halls are a particular 
type of complex buildings or more specifically large-span buildings that hold dry indoor 
sports (e.g., basketball, volleyball, five-a-side soccer, badminton, and martial arts) 
or wet indoor sports (e.g., swimming, and diving) (John and Heard, 1981). A middle 
or large scaled sports hall often consists of a competition venue, a training venue, 
spectator grandstands, and other auxiliary space; while, a small scaled sports hall often 
only includes a training venue without spectator grandstands, and a small amount of 
auxiliary space. The conceptual design of indoor sports halls is multi-disciplinary and 
multi-objective by nature; and it is complex in terms of geometries and performances. 
Thus, the conceptual design of indoor sports halls is a valuable field to which Multi-
Objective Optimization (MOO) design methods and software workflows are applied.

This review is not limited to the above-mentioned field, due to the lack of relevant studies. 
More precisely, this review covers the conceptual sports building design that applies Multi-
Objective Optimization (MOO), Single-Objective Optimization (SOO), or no optimization 
methods. The reviewed studies are presented in Appendix III and described below.

 2.6.2 Gaps of conceptual sports building design

The reviewed studies can be classified in different ways, such as by whether or not 
optimal-design methods are applied, by building geometries and/or by building 
performances. Via the analysis of the studies based on different classifications, 
relevant gaps of conceptual sports building design can be found.
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 2.6.2.1 Lack of applying optimal-design methods

Optimal-design methods are highly useful for conceptual architectural design 
(mentioned in Section 2.3.4). This is also true when it comes to conceptual sports 
building design. Optimization involves formalizing design tasks so that iterative 
computation, both interactive and automated, can be used to find feasible and 
performance-driven design solutions that would be difficult to arrive at using 
only conventional computing and design processes (Culley and Pascoe, 2009). It 
allows more rigorous early exploration, evaluation, and analysis; and extracting 
more information from a wider range of possible solutions allows designers to 
explore more innovative ideas and develop better design solutions (Thornton 
Tomasetti, 2017).

Despite the usefulness of optimal-design methods, current conceptual design 
processes of sports buildings have not taken full advantages of them. Current 
conceptual design processes of sports buildings generally rely only on designers’ 
experience or the knowledge derived from relevant studies (Sun et al., 2013; Zhao 
and Mei, 2013; Rajagopalan and Luther, 2013; Joseph et al., 2015; Suo et al., 2015; 
Nord et al., 2015; Cheng and Bahnfleth, 2016; Ding, 2017; Heinzelmann, 2018; Josa 
et al. 2020). These studies quantitatively explore the impacts of selected variables 
or design strategies on particular performances, but do not necessarily focus on 
the feedback loops from performance assessment to design modification. They may 
have different focuses. For instance, Zhao and Mei (2013) focus on assessing the 
relative impacts of different design factors on interior daylighting and formulating 
design recommendations; Josa et al. (2020) focus on analyzing different aspects of 
sustainability of structural components by means of a multi-criteria decision-making 
method (i.e., a weighted sum method). In these studies, optimization algorithms are 
not employed; instead, statistical techniques like random samplings are often used.

In recent years, discussions about optimal-design methods for conceptual sports 
building design have increased. Some studies utilize Single-Objective Optimization 
(SOO) design methods (Arkinstall and Carfrae, 2006; Holzer et al., 2007; Flager 
et al., 2009b; Shi and Yang, 2013; Zargar and Alaghmandan, 2019; Bianconi et 
al., 2020), while just a few studies utilize Multi-Objective Optimization (MOO) design 
methods (Brown and Mueller, 2016; Yang et al., 2018; Pan et al., 2019). Thus, it 
is worth studying the application of Multi-Objective Optimization (MOO) design 
methods in conceptual sports building design.
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 2.6.2.2 Lack of considering building geometry interaction

Building geometries are usually complex for large-span buildings. The complexity is 
reflected not only in a single type of building components, but also in the interaction 
of multiple types of building components. For instance, interior functional space 
can interact with overall building envelope geometries; overall roof geometries 
can interact with roof structure geometries and roof cladding geometries (Turrin 
et al., 2012). When it comes to sports buildings in particular, various kinds of 
geometries need to be dealt with, including grandstands, building envelopes (e.g., 
glazing, walls and roofs) and roof structure geometries. These geometries often 
interact with each other. For example, a small adjustment to a grandstand (e.g., 
slightly raising the first row or changing its curvature, creating a bit more space 
between rows) can have huge impacts on the overall size and geometry of the 
building envelope and roof structure. Such interaction can be found during the 
conceptual design of outdoor sports buildings, such as the Allianz Arena (2006), the 
Beijing National Stadium (2009), and Singapore Sports Hub (2015); and it is also 
true for indoor sports buildings.

Despite the complexity of building geometries, current conceptual sports building 
design studies that utilize optimal-design methods have not fully considered building 
geometry interaction. They mainly focus on the geometry of a single type of building 
components, such as grandstand geometry (Zargar and Alaghmandan, 2019; 
Bianconi et al., 2020), building envelope geometry (Shi and Yang, 2013), and roof 
structure geometry (Arkinstall and Carfrae, 2006; Holzer et al., 2007; Flager et 
al., 2009b). In contrast, only a few studies focus on the integration of multiple 
types of building geometries, such as the integration of building envelope and roof 
structure geometries (Brown and Mueller, 2016), and the integration of grandstand, 
building envelope and roof structure geometries (Yang et al., 2018; Pan et al., 2019). 
Thus, it is worth highlighting building geometry interaction in conceptual sports 
building design studies that utilize optimal-design methods.
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 2.6.2.3 Lack of consideration building performance conflicts

Building performances are usually complex for large-span buildings. The complexity 
is reflected not only in a single type of building performance but also in the conflicts 
of multiple types of building performances. For instance, the maximization of daylight 
availability can conflict with the minimization of operational energy use (Lartigue 
et al., 2014; Manzan and Clarich, 2017; Futrell et al., 2015); the minimization of 
structural weight can conflict with the minimization of operational energy use (Flager 
et al., 2009b); the minimization of structural displacement can conflict with the 
minimization of structural weight (Papadrakakis et al., 2002); and the architectural 
aesthetics can conflict with other engineering performances (Mueller and 
Ochsendorf, 2015). When it comes to sports buildings in particular, various kinds 
of performances need to be considered, including architectural, climatic, structural, 
and energy performances. These performances are often in conflict with each other. 
For example, a small adjustment to a grandstand (e.g., slightly raising the first row 
or changing its curvature, creating a bit more space between rows) may provide 
better view quality for spectators, but lead to a larger structure that demands more 
embodied energy and construction costs. Such conflicts can be found during the 
conceptual design of outdoor sports buildings, such as the Allianz Arena (2006), the 
Beijing National Stadium (2009), and Singapore Sports Hub (2015); and it is also 
true for indoor sports buildings.

Despite the complexity of building performances, current conceptual sports building 
design studies that utilize optimal-design methods have not fully considered 
building performance conflicts. They mainly focus on a single type of building 
performance, such as view quality performance (Zargar and Alaghmandan, 2019; 
Bianconi et al., 2020), solar radiation performance (Shi and Yang, 2013); and 
structural performance (Arkinstall and Carfrae, 2006; Holzer et al., 2007; Flager et 
al., 2009b). In contrast, only a few studies focus on the conflicts of multiple types 
of building performances, such as the conflict of embodied and operational energy 
performances (Brown and Mueller, 2016), the conflict of daylighting, operational 
energy, and structural performances (Yang et al., 2018), and the conflict of view 
quality, structural and acoustic performances (Pan et al., 2019). Thus, it is worth 
highlighting building performance conflicts in conceptual sports building design 
studies that utilize optimal-design methods.
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 2.7 Conclusion

This chapter concludes by summarizing the main research results (Section 2.7.1) 
and providing concluding remarks (Section 2.7.2).

 2.7.1 Main research results

The main research results of this chapter include the following:

 – Dynamic and interactive re-definition or re-formulation has been identified as a 
potential means to achieve a more reliable design task and optimization problem. It 
highlights continuous knowledge extraction, quantitative and qualitative thinking, 
and divergent and convergent thinking. However, it has not often been discussed in 
optimal-design methods.

 – Dynamic and interactive Optimization Problem Re-Formulation (Re-OPF) has rarely 
been incorporated in Multi-Objective Optimization (MOO) design methods. The few 
methods that can do so still have room for improvement, especially in terms of 
information and knowledge extraction.

 – Visual Programming (VP) software and Process Integration and Design Optimization 
(PIDO) software have rarely been integrated into Multi-Objective Optimization 
(MOO) software workflows. A software workflow that can do so still has limitations, 
especially in terms of software integration.

 – Discussions about optimal-design methods for conceptual sports building design 
have increased recently. Nevertheless, related studies have not fully considered 
the complexity of building geometry and building performance; and Multi-Objective 
Optimization (MOO) design methods have not been commonly applied to this 
design field.

 2.7.2 Concluding remarks

In conclusion, it is necessary to establish: a new Multi-Objective and Multi-
Disciplinary Optimization (MOMDO) design method that can incorporate dynamic 
and interactive Optimization Problem Re-Formulation (Re-OPF) (to be elaborated 
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in Chapter 3); and an improved Multi-Objective and Multi-Disciplinary Optimization 
(MOMDO) software workflow where Grasshopper and modeFRONTIER are integrated 
in a better manner (to be elaborated in Chapter 4). Moreover, it is valuable to apply 
the proposed design method and software workflow to the conceptual design of 
indoor sports halls (to be elaborated in Chapters 5 and 6).
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3 Design method 
development
This chapter proposes a Multi-Objective and Multi-Disciplinary Optimization (MOMDO) 
design method. The method is designed for the conceptual design of complex buildings 
such as indoor sports halls. It contains two subtypes that are respectively suitable 
for reducing existing design possibilities and sparking new design possibilities.

The chapter is structured as follows. First, it introduces the specific purpose and 
direction of the method development (Section 3.1). Then, it describes the phases 
and subtypes of the method (Section 3.2) and important computational techniques 
adopted by the method (Section 3.3). Finally, it concludes by summarizing the main 
research results and providing concluding remarks (Section 3.4).

Section 3.2-3.3 involves contents published in Journal Articles 1-2 (Yang et 
al., 2018; Yang et al., 2020).

 3.1 Introduction

The specific purpose of the method development is to establish a new Multi-Objective 
and Multi-Disciplinary Optimization (MOMDO) design method that can incorporate 
dynamic and interactive Optimization Problem Re-Formulation (Re-OPF) in a 
better manner.

The necessity of a new method has been shown in the literature review in Chapter 2. 
As stated in Section 2.4.3, the promising type of methods reviewed (e.g., Newton’s and 
Kaushik and Janssen’s methods that have incorporated dynamic and interactive re-
formulation to varying degrees) still has room for improvement in terms of information 
and knowledge extraction. According to relevant literature, the aforementioned 
promising methods had not sufficiently discussed how to extract useful information 
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and knowledge for dynamic and interactive Optimization Problem Re-Formulation 
(Re-OPF). Thus, a promising direction of the method development is to enhance 
the information and knowledge extraction for Optimization Problem Re-Formulation 
(Re-OPF), more precisely, to properly arrange relevant actions associated with 
the information and knowledge extraction. Furthermore, to support those actions, 
computational techniques are necessary. The computational support includes the 
techniques, directly and indirectly, useful for information and knowledge extraction.

 3.2 The Multi-Objective and Multi-Disciplinary 
Optimization (MOMDO) method

The proposed method is developed based on the aforementioned development 
direction. This section first describes the phases and subtypes of the method in a 
general way (Section 3.2.1); and then, it provides more specifics of the phases and 
subtypes respectively (Section 3.2.2 and 3.2.3).

 3.2.1 The phases and subtypes of the method

The proposed method consists of three phases and contains two subtypes, as 
illustrated in FIG.3.1.

The three phases are:

 – Phase-I: Optimization Problem Initial-Formulation (Initial-OPF), which is an 
ideation phase responsible for “formulating” an initial Multi-Objective Optimization 
(MOO) problem.

 – Phase-II: Optimization Problem Re-Formulation (Re-OPF), which is an exploration 
phase responsible for “re-formulating” previous Multi-Objective Optimization 
(MOO) problems.

 – Phase-III: Optimization Problem Solving (OPS), which is an optimization phase 
responsible for “solving” a final Multi-Objective Optimization (MOO) problem.
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Phase-I: 
Initial-OPF

Phase-II:
Re-OPF

Phase-III:
OPS

Subtype-I:
Non-dynamic, 

Interactive 
Re-formulation 

method

Subtype-II:
Dynamic, 

Interactive 
Re-formulation 

method 

Traditional
method

Multiple 
re-formulation iterations

One 
re-formulation iteration

N/A

Multiple 
initial concepts

One 
initial concept

One 
initial concept

Directed 
initial population

Directed 
initial population

Random 
initial population

FIG. 3.1 The phases and subtypes of the proposed method

Note: The three blue columns represent the three phases of the proposed method; the first orange row represents a traditional 
method; the second and third orange rows represent the two subtypes of the proposed method; the arrows indicate where 
changes are made.

Among these phases, the re-formulation phase is the key one. This phase makes 
it possible to shift objective space and design space to include unexplored areas 
and/or exclude existing areas, thus facilitating the achievement of a more reliable 
optimization problem and more reliable optimal solutions. The incorporation of 
this phase is the main innovation of the proposed method, which differentiates this 
method from traditional methods (that do not incorporate the re-formulation phase).

The two subtypes are:

 – Subtype-I: Non-dynamic, Interactive Re-formulation method, which is more 
suitable for the design context where the main purpose is to reduce existing design 
possibilities (i.e., shrink exploration space).

 – Subtype-II: Dynamic, Interactive Re-formulation method, which is more suitable for 
the design context where the main purpose is to spark new design possibilities (i.e., 
expand exploration space).
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Either of the two subtypes consists of the aforementioned three phases. As indicated 
by the names, these two subtypes are distinguished from each other mainly by their 
variations in the re-formulation phase. More precisely, they are different in the initial-
formulation and re-formulation phases (i.e., the different numbers of initial concepts 
and of re-formulation iterations), but the same in the solving phase (i.e., the same 
way to get directed initial populations).

 3.2.2 Specifics of the three phases

The three phases of the proposed method contain several groups of general actions 
that are appropriately arranged (i.e., Action A-G), as illustrated in FIG.3.2. These 
actions are described in this section, especially those in the key phase - the re-
formulation phase (i.e., Action C-E).

Data generation
• Sampling (for representing a design space)
• Automated geometry generation
• Automated simulation run

Information and knowledge 
extraction

• Quantitative information extraction
• Qualitative information extraction
• Quantitative and qualitative information 

interpretation
• Quantitative and qualitative information 

synthesis

MOO model re-formulation
• Parametric geometry model modification 
• Simulation model modification
• Geometry-simulation model integration

Dynamic, Interactive Re-OPF 
D C

E

xxxxx

Data sets of all 
selected samples

New knowledge about
re-formulation of  
an MOO problem

Initial concept generation
• Brainstorming etc.

MOO model initial formulation
• Parametric geometry model creation 
• Simulation model creation
• Geometry-simulation model integration

Initial-OPF

MOO setup and execution
• Sampling (for creating an initial population)
• Automated geometry generation
• Automated simulation run

MOO result comparison
• Optimization result comparison for different 

purposes

A B

G F
OPS

Ideas about
initial formulation of  

an MOO problem

Data sets of all 
searched solutions

iterations

FIG. 3.2 The general actions required in the proposed method (Yang et al., 2020)

Note: The dark gray boxes show computer actions; the white boxes show human actions; and the light gray boxes show actions 
related to human-computer interaction.
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 3.2.2.1 Phase-I: Optimization Problem Initial-Formulation

To establish the initial-formulation phase, actions for initial concept generation (i.e., 
Action A) and MOO model initial formulation (i.e., Action B) are needed.

In initial concept generation (i.e., Action A), designers brainstorm and come up with 
one or multiple initial design concepts which are proposed to fulfil initial design 
requirements. Based on these concepts and requirements, designers can decide on 
initial design variables and performance measures.

In MOO model initial formulation (i.e., Action B), an initial parametric geometry 
model and simulation models are created, based on the preliminary ideas about 
design variables and performance measures. Then, these models are integrated to 
achieve an initial MOO model consisting of an initial set of performance objectives, 
constraints, and design variables. The initial MOO model, as the output of this phase, 
will be used to generate data for analysis in the next phase.

 3.2.2.2 Phase-II: Optimization Problem Re-Formulation

To establish the re-formulation phase, actions for data generation (i.e., Action C), 
information and knowledge extraction (i.e., Action D), and MOO model re-formulation 
(i.e., Action E) are needed.

In data generation (i.e., Action C), a large number of samples are selected from the 
design space defined by the initial (or latest) MOO model; and the selected samples 
form a representation of the entire design space. Here, a sample means a vector of 
design variable values in a design space. Based on the initial (or latest) MOO model, 
the geometries of the selected samples are generated and related simulations 
are run automatically. This automation is driven by a predetermined sequential 
order. Then, qualitative data sets (i.e., images showing building geometries) and 
quantitative data sets (i.e., input values defining building geometries and output 
values representing performance results) of all selected samples are collected.

In information and knowledge extraction (i.e., Action D), the quantitative data sets 
are analyzed by computers to extract information about quantitative performances; 
and the qualitative data sets are observed by humans to extract information about 
qualitative performances. Then, the two kinds of information are interpreted and 
synthesized, to acquire comprehensive new knowledge about which design variables 
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and performance measures should be added or removed, namely new knowledge 
about the re-formulation of the MOO problem.

In MOO model re-formulation (i.e., Action E), the initial (or latest) parametric 
geometry model and simulation models are re-defined based on the acquired new 
knowledge. Then, these models are integrated to achieve a re-formulated MOO 
model consisting of a re-defined set of performance objectives, constraints, and 
design variables.

At this point, designers can decide either to continue the re-formulation phase by 
iterating through the above three groups of general actions (i.e., Action C-E), or, to 
enter the solving phase. This decision depends on the designers’ satisfaction level 
of the re-formulated MOO model, and/or, the project’s timeframe. After completing 
one or multiple re-formulation iterations, a final MOO model consisting of a final set 
of performance objectives, constraints, and design variables is achieved. The final 
MOO model, as the output of this phase, will be used to run optimizations in the 
next phase.

 3.2.2.3 Phase-III: Optimization Problem Solving

To establish the solving phase, actions for MOO setup and execution (i.e., Action F) 
and MOO result comparison (i.e., Action G) are needed.

In MOO setup and execution (i.e., Action F), a small number of samples are selected 
from the design space defined by the final MOO model (more specifically from the 
high-performing clusters of samples in that design space); and the selected samples 
form a directed initial population for optimization. Based on the final MOO model, 
the geometries of searched solutions are generated and related simulations are 
run automatically. This automation is driven by an optimization algorithm. Then, 
qualitative and quantitative data sets of all searched solutions (i.e., optimal and non-
optimal solutions) are collected.

In MOO result comparison (i.e., Action G), the qualitative and quantitative data sets 
of the optimal solutions are compared in order to extract relevant information and 
knowledge (e.g., trade-off relations between pairs of performance objectives, relative 
advantages of a particular optimal-design method over others), so as to support 
final design decision-making and/or optimal-design method verification.
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 3.2.2.4 The key phase

Among the above three phases, the re-formulation phase is the key one. This is 
because such re-formulation makes it possible to shift objective space and design 
space to include unexplored areas and/or exclude existing areas, thus enabling the 
achievement of a more reliable optimization problem and more realistic optimal 
solutions, as explained in Section 2.3.3. Three groups of general actions are needed 
to establish this phase (i.e., Action C-E), as described below.

Data generation (i.e., Action C) is the basis of the re-formulation phase. It is a 
process to provide design variable values and performance values for further 
analysis. In this process, advanced sampling algorithms are used to select samples, 
rather than pure random sampling algorithms or optimization algorithms. By doing 
so, the selected samples can become more representative (i.e., representing an 
entire design space rather than a small portion of it), thus helping to understand the 
overall performance trends of the entire design space; and the sampling can become 
more efficient (i.e., requiring relatively less samples to represent the design space), 
hence helping to reduce simulation time. Nevertheless, it is also possible to use 
optimization algorithms to select samples, when the divergence of exploration is not 
so highlighted.

Information and knowledge extraction (i.e., Action D) is the core of the re-
formulation phase. It is essentially a process to transfer raw data into useful 
information and knowledge based on human-computer interaction, as illustrated 
in FIG.3.3. In this process, on one hand, advanced quantitative data analysis 
techniques (i.e., computational supports) are used to extract quantitative 
information, and such information is then interpreted by designers to form 
quantitative knowledge; on the other hand, human observations and judgments (i.e., 
human subjectivity) are used to extract qualitative information, and such information 
is then interpreted by designers to form qualitative knowledge; finally, these two 
categories of knowledge are synthesized into comprehensive new knowledge. By 
doing so, designers can gradually improve their understanding of performance 
objectives and constraints, design variables, and their interplay.

MOO model re-formulation (i.e., Action E) is the result of the re-formulation phase. 
It is a process to re-define previous parametric geometry models and simulation 
models based on the extracted knowledge, so as to obtain a new MOO model. In this 
process, designers are facilitated by flexible modeling techniques, especially when 
there are many performance measures and design variables to be added or removed.
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Quantitative data analysis
(extracting information about quantitative performance)

Quantitative data interpretation
(extracting knowledge about quantitative performance)

Qualitative data interpretation
(extracting knowledge about qualitative performance)

Knowledge synthesization

Raw 
data

Useful 
knowledge

Qualitative data analysis
(extracting information about qualitative performance)

FIG. 3.3 Information and knowledge extraction relying on human-computer interaction

 3.2.3 Specifics of the two subtypes

The two subtypes of the proposed method are distinguished from each other mainly 
by their different numbers of re-formulation iterations. The Subtype-I method 
(i.e., non-dynamic method) includes one re-formulation iteration to handle mainly 
convergent exploration. The Subtype-II method (i.e., dynamic method) includes 
multiple re-formulation iterations to handle mainly divergent exploration. For either 
subtype, three groups of general actions (i.e., Action C-E) are followed in each 
re-formulation iteration; but importantly, these actions can contain customizeable 
specific actions and result in different outcomes in each re-formulation iteration.

To better understand the two subtypes and their suitable design contexts, it is 
valuable to exemplify them by focusing on the specific actions and the outcomes of 
the re-formulation phase, as described below.

 3.2.3.1 Subtype-I: Non-dynamic, Interactive Re-formulation method

To better understand this subtype method, an example of it is provided (see FIG.3.4). 
This example includes one re-formulation iteration, and the specific actions of the 
iteration are marked by C1, D1, E1 in FIG.3.4. It has also been described in one of 
the author’s previous publications (Yang et al., 2018).
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Data generation
Select samples, generate geometry and run 
simulation (based on the initial MOO model)

Information extraction
 Correlations between pairs of quantitative 
performance measures
 Clusters of samples with similar design features 
and quantitative performances
 Sensitivity of design variables on performance 
measures
Knowledge extraction
 What are meaningful existing (quantitative) 
performance measures and new (qualitative)
performance measures?
 What are (quantitatively and qualitatively)
promising existing design directions?
 What are (quantitatively and qualitatively)
important existing design variables?

MOO model re-formulation
 Quantitative measure reduction 
 Qualitative measure addition 
 (High-level) design variable reduction 
 (Low-level) design variable reduction

The 1st Re-OPF iteration

C1D1

E1

FIG. 3.4 The re-formulation phase in an example of the Subtype-I method

In the only re-formulation iteration, first, a data set is generated based on the 
initial MOO model. This MOO model may need to be adjusted (e.g., by adjusting 
design variable ranges and performance measure definitions) so that more feasible 
solutions and more properly defined measures can be obtained. Then, three kinds 
of quantitative information are extracted, thus aiding the following knowledge to be 
acquired: what are meaningful existing (quantitative) performance measures and 
new (qualitative) performance measures; what are (quantitatively and qualitatively) 
promising existing design directions; and what are (quantitatively and qualitatively) 
important existing design variables? The term “existing” is used to describe the ones 
which are already included in the model. Last of all, a re-formulated MOO model 
is obtained by conducting quantitative measure reduction, qualitative measure 
addition, and design variable reduction, as suggested by the extracted knowledge. 
This model is ready for the solving phase.

The above specific actions are just one possible option among many. Different 
specific actions can be conducted when using the Subtype-I method (i.e., non-
dynamic method), which reflects the flexibility of this method. For instance, it is 
possible for designers to: extract a different combination of specific information and 
knowledge; and conduct mainly but not necessarily only convergent re-formulation.
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 3.2.3.2 Subtype-II: Dynamic, Interactive Re-formulation method

To better understand this subtype method, another example of it is provided (see 
FIG.3.5). This example includes three re-formulation iterations, and the specific 
actions of the iterations are marked by C1-C3, D1-D3, E1-E3 in FIG.3.5. It has also 
been described in one of the author’s previous publications (Yang et al., 2020).

In the first re-formulation iteration, the first data set is generated based on the 
initial MOO model. Then, three kinds of quantitative information are extracted, 
thus aiding the following knowledge to be acquired: what are meaningful existing 
(quantitative) performance measures and new (qualitative) performance measures; 
what are (quantitatively and qualitatively) promising concepts among the initial 
ones; and what are (quantitatively and qualitatively) promising concepts besides the 
initial ones? Lastly, the first re-formulated MOO model is obtained by conducting 
quantitative measure reduction, qualitative measure addition, convergent concept 
selection, and divergent concept generation, as suggested by the extracted 
knowledge. This model is ready for the next re-formulation iteration.

In the second re-formulation iteration, the second data set is generated based 
on the first re-formulated MOO model. Then, one kind of quantitative information 
is extracted, thus aiding the following knowledge to be acquired: what are 
(quantitatively and qualitatively) promising concepts besides the existing ones? 
Lastly, the second re-formulated MOO model is obtained by conducting divergent 
concept generation, as suggested by the extracted knowledge. This model is ready 
for the next Re-OPF iteration.

In the third re-formulation iteration, the third data set is generated based on the 
second re-formulated MOO model. Then, one kind of quantitative information 
is extracted, thus aiding the following knowledge to be acquired: what are 
(quantitatively and qualitatively) promising concepts among all explored ones? Last 
of all, the third re-formulated MOO model is obtained by conducting convergent 
concept selection, as suggested by the extracted knowledge. This model is ready for 
the solving phase.

The above specific actions are just one possible option of many. More specific actions 
can be conducted when using the Subtype-II method (i.e., dynamic method), as this 
subtype method has a higher level of flexibility than the Subtype-I method (i.e., non-
dynamic method). For instance, it is possible for designers to: include more than one 
but not necessarily three re-formulation iterations; extract a different combination 
of specific information and knowledge in each iteration; and conduct mainly but not 
necessarily only divergent re-formulation.
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The 1st Re-OPF iteration
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FIG. 3.5 The re-formulation phase in an example of the Subtype-II method (Yang et al., 2020)
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 3.2.3.3 Suitable design contexts

As shown above, the proposed method is in fact flexible due to the involvement of 
humans. The flexibility is especially reflected in the re-formulation phase where 
designers are allowed to customize specific actions. That is, designers can: include a 
desired number of re-formulation iterations and focus on different specific aspects of 
information and knowledge extraction (i.e., Action D) and MOO model re-formulation 
(i.e., Action E) in different iterations. To be more specific, they can: include one or 
multiple re-formulation iterations, and focus on quantitative or qualitative thinking, 
divergent or convergent thinking, to varying degrees, in different iterations.

The flexibility allows the proposed method to be applied in different design contexts. 
The relatively early sub-phase of conceptual architectural design is the right timing 
to spark new design possibilities, which can prevent overlooking valuable design 
variables (Liu et al., 2003). Concurrently, the relatively late sub-phase of conceptual 
architectural design is the good timing to reduce existing design possibilities, 
which can restrict the number of design variables from getting too large to allow 
meaningful considerations (Liu et al., 2003). Thus, the Subtype-I method (i.e., non-
dynamic method), which handles mainly convergent exploration, is suitable for the 
latter design context; while the Subtype-II method (i.e., dynamic method), which 
handles mainly divergent exploration, is suitable for the former design context.

It is worth understanding that Pareto optimal solutions should have the following 
characteristics. From the perspective of quantitative performances, Pareto optimal 
solutions should be as close as possible to the true Pareto front, and as uniformly 
spread as possible within the decision maker’s region of interest. That is, they 
should have good proximity, diversity, and pertinence (Fleming et al, 2005; Rostami 
and Shenfield, 2017). From the perspective of qualitative performances, Pareto 
optimal solutions should be as compliant as possible with the decision maker’s 
subjective geometric preferences and have a proper degree of geometric variations. 
That is, they should be good in geometric preference compliance and geometric 
variation appropriateness.

Some of these characteristics can be understood differently in different design 
contexts. In the context that highlights reducing existing design possibilities, good 
pertinence means that Pareto solutions are within a small region of interest, good 
geometric variation appropriateness means that Pareto solutions have a low degree 
of geometric variations. In contrast, in the context that highlights sparking new 
design possibilities, good pertinence means that Pareto solutions are within a large 
region of interest, good geometric variation appropriateness means that Pareto 
solutions have a high degree of geometric variations.
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 3.3 Computational techniques

Given the importance of computational techniques, this section particularly focuses 
on presenting those unfamiliar to architects. More precisely, the computational 
techniques presented in this section are those that can directly and indirectly 
support the information and knowledge extraction during the Optimization Problem 
Re-Formulation (Re-OPF) phase.

As shown in Appendix IV, those techniques are grouped into the following three 
categories: techniques for data generation (Section 3.3.1), techniques for 
information and knowledge extraction (Section 3.3.2), and techniques for MOO 
model re-formulation (Section 3.3.3). Among these techniques, those for information 
and knowledge extraction are the key and especially highlighted in this research, 
while the others are not investigated in equal depth.

 3.3.1 Techniques for data generation

 3.3.1.1 Necessity of advanced sampling algorithms

Advanced sampling algorithms here refer to the algorithms that can be used to 
select samples in efficient ways. They are needed mainly because they are useful 
for the data generation during the Optimization Problem Re-Formulation (Re-OPF) 
phase, as briefly mentioned in Section 3.2.2.4. More specifically, they have relative 
advantages over other means of selecting samples, as described below.

In a traditional optimal-design method that involves no Optimization Problem 
Re-Formulation (Re-OPF), a pure random sampling algorithm and an optimization 
algorithm are often used in combination during the Optimization Problem Solving 
(OPS) phase. The former algorithm is used to select a small number of samples to 
serve as the initial population for optimization; while the latter algorithm is used to 
select the rest generations of samples that gradually approach optimization goals.

However, in an optimal-design method that involves Optimization Problem Re-
Formulation (Re-OPF), more samples need to be preselected to run simulations. 
When using a pure random sampling algorithm together with an optimization 
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algorithm, it can lead to less representative samples (that only represent a small 
portion of the design space), which hinders the understanding of the overall 
performance trends of an entire design space. When using a pure random sampling 
algorithm alone, it can lead to less efficient sampling (that requires many samples 
to represent the design space), which increases simulation time. Thus, it is valuable 
to utilize advanced sampling algorithms to select representative samples efficiently 
for running simulations in the Optimization Problem Re-Formulation (Re-OPF) phase. 
Those algorithms can be seen as indirectly useful for the information and knowledge 
extraction, considering that the sample selection and simulation run are the basis of 
the information and knowledge extraction.

Design of experiments sampling algorithms (specifically Uniform Latin Hypercube 
Sampling) are the advanced sampling algorithms focused on in this research, as 
presented in the next section.

 3.3.1.2 Design of experiments sampling: Uniform Latin Hypercube 
Sampling

Design of experiments sampling algorithms guide the choice of samples in a way 
that obtains the maximum amount of information using the minimum amounts of 
resources, namely using a lower number of samples (Cavazzuti, 2013). They can be 
used to select samples that can represent an entire design space, thus facilitating 
the exploration of the performance trends over the entire spectrum of that design 
space (Flager et al., 2009a). An advanced sampling algorithm differs from an 
optimization algorithm - the former selects all samples in one shot before running 
simulations, while the latter selects a small portion of samples at a time based on 
previous simulation results. An advanced sampling algorithm also differs from a 
purely random sampling algorithm - the former can use a relatively smaller number 
of samples than the latter, to represent the same design space.

Uniform Latin Hypercube (ULH) Sampling is a particular advanced sampling 
technique (McKay et al., 1979). Essentially, it is a stratified sampling technique. It 
splits the range of each input variable into N intervals of equal probability; then, each 
of the N partitions is sampled once (Davis et al., 2018). It can guarantee the lowest 
correlation between each pair of input variables and the highest uniform distribution 
(Clarich and Russo, 2011).
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 3.3.2 Techniques for information and knowledge extraction

 3.3.2.1 Necessity of advanced quantitative data analysis techniques

Advanced quantitative data analysis techniques here refer to the techniques that 
can be used to analyze quantitative data in efficient ways. They are needed mainly 
because they are useful for the information and knowledge extraction during the 
Optimization Problem Re-Formulation (Re-OPF) phase, as briefly mentioned in 
Section 3.2.2.4. To be more specific, they have advantages in extracting various 
useful information, as described below.

In a traditional optimal-design method that involves no Optimization Problem Re-
Formulation (Re-OPF), trade-off analysis is often used in the Optimization Problem 
Solving (OPS) phase. It is used to extract information about trade-off relations 
between pairs of performance objectives.

However, in an optimal-design method that involves Optimization Problem Re-
Formulation (Re-OPF), more information needs to be extracted to aid with acquiring 
relevant knowledge. Such information includes but is not limited to correlations 
among performance measures, interplay between performance measures and design 
variables, sensitivity of performance measures to design variables. When still using 
trade-off analysis alone, it is hard to grasp all the above information. Thus, it is 
valuable to utilize advanced quantitative data analysis techniques to extract a broad 
range of information for acquiring relevant knowledge in the Optimization Problem 
Re-Formulation (Re-OPF) phase. Given this fact, those techniques can be seen as 
directly useful for the information and knowledge extraction.

In addition, it is worth noting that advanced quantitative data analysis techniques 
are also useful for the Optimization Problem Solving (OPS) phase. For instance, 
knowing the interplay between performance measures and design variables can 
help to obtain promising initial populations for optimization. Normally, an initial 
population is created by randomly selecting samples from an entire design space. 
In this way, the performances of the samples are not taken into account during the 
creation of the initial population. This can lead to unfavorable initial population and 
cause the search to start from low-performing samples, thus limiting the search 
efficiency. In fact, it would be useful to create an initial population by selecting 
samples from high-performing clusters of samples (but knowing these clusters 
requires advanced quantitative data analysis). In this way, the performances of 
the samples are an important concern during the creation of the initial population; 
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and the initial population created is called a directed initial population. This can 
bring about promising initial population and make the search starting from high-
performing samples, thus improving the search efficiency.

Correlation analysis, cluster analysis, and sensitivity analysis (specifically Self-
Organizing Map, Hierarchical Clustering, and Smoothing Spline Analysis of Variance) 
are the advanced quantitative data analysis techniques focused on in this research, 
as presented in the following three sections.

 3.3.2.2 Correlation analysis: Self-Organizing Map

Correlation analysis measures the strength and direction of the relationship between 
two quantitative variables (Bobko, 2001; Chen and Popovich, 2002; Franzese and 
Iuliano, 2019). It can be used to extract correlations between pairs of quantitative 
performance measures. Knowing this information, can help to identify meaningful 
quantitative performance measures from possible ones. Specifically, when two 
measures are positively and strongly correlated and their optimization directions are 
the same, or, when two measures are negatively and strongly correlated and their 
optimization directions are opposite, there are probably no meaningful trade-off 
relations between the two measures. Thus, one of the measures can be considered 
meaningful and kept for further exploration, while the other one can be removed or 
treated as a constraint.

Self-Organizing Map (SOM) is a particular way of conducting correlation analysis 
(Kohonen, 2001). Essentially, it is an unsupervised neural network for ordering of 
high-dimensional data in such a way that similar data are grouped spatially close to 
one another (Di Stefano, 2009). Concisely, it is a dimensionality reduction method 
which maps multi-dimensional data into a two-dimensional space. It is suitable 
for hunting for correlations, given its intuitive way of visualizing and interpreting 
SOM planes (Vesanto, 1999; Vesanto and Ahola, 1999; Himberg et al., 2001; 
Köhler et al., 2010).

The principle of the Self-Organizing Map (SOM) technique is shown in FIG.3.6 and 
described below. First, a learning algorithm is applied to a training data set that has 
three dimensions (i.e., quantitative performance measures X, Y and Z), in order to 
generate prototype vectors (i.e., the vectors whose distribution approximates the 
probability density function of the training data set, as defined by Köhler et al.). The 
prototype vectors gradually approach the distribution of the training data set by using 
the algorithm; each prototype vector may correspond to a subset of the training data. 
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FIG. 3.6 Self-Organizing Map (revised from Köhler et al., 2010)

Note: SOM generation (left); SOM visualization and interpretation (right).

Then, the prototype vectors obtained are projected onto a two-dimensional 
honeycomb-like diagram (unfilled with colors). This diagram is the basis of 
generating a SOM plane (filled with colors) for each dimension. SOM plane’s units 
are colored based on the values of the obtained prototype vectors. The color scale 
from blue to red represents the values from low to high. Finally, SOM planes for all 
dimensions are arranged on a large hexagonal grid, according to the correlations 
of the dimensions. The stronger the correlation between two dimensions, the more 
similar the SOM planes’ color patterns and the closer the SOM planes’ positions. 
Thus, by visually observing the SOM planes, the correlations between pairs of all 
dimensions can be quickly understood. For instance, the SOM planes for Y and Z 
have similar color patterns and are closer with each other, which means that Y and 
Z are strongly correlated; while the SOM planes for X and Y have very different color 
patterns and are far away from each other, which means that X and Y are weakly 
correlated. As for the correlation directions, when the same areas of the SOM 
planes have more similar colors, the associated dimensions are more likely to be 
positively correlated.

Arrows on top of the SOM planes can show the optimization directions. Those 
pointing from a low-value area to a high-value area (i.e., from blue to red) represent 
maximization goals; while those having the opposite direction represent minimization 
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goals. Thus, by simultaneously observing the SOM planes and the arrows, it is 
convenient to know the strength and direction of each pair of dimensions, and the 
optimization directions of these dimensions, so as to know if there are meaningful 
trade-off relations between the dimensions in question.

 3.3.2.3 Cluster analysis: Hierarchical Clustering

Cluster analysis identifies homogeneous clusters of samples in a source data set 
based on measured characteristics (Di Stefano, 2009). It can be used to extract 
clusters of samples with similar design features and quantitative performances. 
Knowing this information, can help to identify quantitatively promising design 
concepts (or directions) from existing ones. Specifically, quantitatively high-
performing clusters can be identified from all clusters, by narrowing down focused 
performance ranges towards optimization directions to desired extents; when the 
clusters identified mostly belong to a design concept, this concept is reasonably 
believed to be more competitive. Thus, this concept can be considered quantitatively 
promising and kept for further exploration.

Hierarchical Clustering (HC) is a particular way of conducting cluster analysis (Di 
Stefano, 2009). Essentially, it is a versatile data clustering approach which produces 
a nested series of partitions rather than only one partition (Jain et al., 1999). 
Concisely, it is a data structure refinement method which can provide refined views to 
the inherent structure of the data. It is suitable for creating clusters, given its flexible 
way of grouping a large amount of data into manageable and meaningful clusters.

The principle of the Hierarchical Clustering technique is shown in FIG.3.7 and 
described below. First, a clustering algorithm is applied to a source data set that has 
four dimensions (i.e., quantitative performance measures X, Y and Z, and a design 
variable called Concept), in order to generate desired clusters. Similar samples in the 
source data set are gradually merged by using the algorithm; larger clusters created 
at later stages are based on smaller clusters created at earlier stages, thus forming 
nested clusters. Then, the nested clusters are represented by a tree-like diagram 
called dendrogram. By choosing the position of a horizontal dash line that intersects 
with the dendrogram, the number of clusters to be applied to the source data set 
are determined (each intersection represents a cluster). Finally, the clusters applied 
are visualized using a clustering parallel coordinate chart. They are represented 
by different colored bands. For each colored band, the intersections of the center 
polyline and the parallel vertical lines show the mean values of the clusters at different 
dimensions; and the band width shows the confidence intervals of the mean values. 
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Thus, by visually observing the colored bands, the relative trends of the design 
concepts (or directions) and their performance values can be quickly understood. 
For instance, the design concept (or direction) number two has relatively high X 
values, relatively low Y values and medium Z values.
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FIG. 3.7 Hierarchical Clustering (revised from Jain et al., 1999)

Note: Cluster generation (left); cluster visualization and interpretation (right).

Arrows along with the parallel vertical lines can show the optimization directions. 
Those pointing from a low-value to a high-value represent maximization goals 
while those having the opposite direction represent minimization goals. Thus, by 
collectively observing the colored bands and the arrows, it is convenient to know the 
clusters that best conform to the optimization directions of all dimensions, so as to 
know quantitatively promising design concepts (or directions).
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 3.3.2.4 Sensitivity analysis: Smoothing Spline Analysis of Variance

Sensitivity analysis estimates how the variations of the input variables of a 
mathematical model influence the response values (Tzuc et al., 2019). It can be 
used to extract sensitivity of design variables on performance measures. Knowing 
this information, can help to identify important design variables that contribute the 
most to the variation of performance measures. Specifically, all design variables are 
ranked in the order of sensitivity (or importance); then, high-ranked design variables 
which account for the major portion of a cumulative effect are considered important 
and kept for further exploration.

Smoothing Spline Analysis of Variance (SS-ANOVA) is a particular way of conducting 
sensitivity analysis (Gu, 2002). Essentially, it is a statistical modeling algorithm 
based on a function decomposition similar to the classical Analysis of Variance 
(ANOVA) decomposition and the associated notions of main effects and interaction; 
concisely, it is a function estimation method for both univariate and multivariate 
regression problems (Ricco et al., 2013). It differs from the classical ANOVA, mainly 
in that it is a more flexible nonparametric regression model that can vary in a high-
dimensional function space, rather than a classical parametric regression model that 
has a given fixed form (Touzani and Busby, 2013). It is suitable for screening design 
variables, given this flexibility.

 3.3.3 Techniques for multi-objective optimization 
model re-formulation

 3.3.3.1 Necessity of flexible modeling techniques

Flexible modeling techniques here refer to the techniques that can be used to create 
MOO models in flexible ways. They are needed mainly because they are useful for 
the MOO model re-formulation during the Optimization Problem Re-Formulation 
(Re-OPF) phase, as briefly mentioned in Section 3.2.2.4. To be more specific, they 
have advantages in modifying parametric geometric models and multi-disciplinary 
simulation models, as described below.

In a traditional optimal-design method that involves no Optimization Problem Re-
Formulation (Re-OPF), modeling techniques with limited flexibility are often used in 
the Optimization Problem Initial-Formulation (Initial-OPF) phase (Davis et al., 2011). 
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They are used to build parametric geometric models and multi-disciplinary 
simulation models in one shot without the need to modify them later.

However, in an optimal-design method that involves Optimization Problem Re-
Formulation (Re-OPF), parametric geometric models and multi-disciplinary 
simulation models need to be modified flexibly. When still using less flexible modeling 
techniques, it can lead to cumbersome model modification (Davis et al., 2011) or 
low conceptual variety (Kilian, 2006). Thus, it is valuable to utilize flexible modeling 
techniques for modifying parametric geometric models and multi-disciplinary 
simulation models in the Optimization Problem Re-Formulation (Re-OPF) phase. 
Those techniques can be seen as indirectly useful for the information and knowledge 
extraction, considering that the model modification is the basis of a new round of 
information and knowledge extraction.

In addition, it is worth noting that flexible modeling techniques are also useful for 
the Optimization Problem Initial-Formulation (Initial-OPF) phase. For instance, they 
can help to incorporate broader initial design concepts and performance criteria. 
Normally, only one initial concept and a limited number of criteria are considered in 
the initial MOO model. This is fine when aiming to reduce existing design possibilities 
and when the performance requirements are few. But, in contrast, when aiming 
to spark new design possibilities and the performance requirements are many, it 
is meaningful to consider broader initial concepts and criteria in the initial MOO 
model. This can increase the variety of concepts and criteria, thus helping to find 
good solutions.

Hierarchical variable structure and Modular programming (specifically Two-Level 
Variable Structure, Geometry and Simulation Modular Programming) are the flexible 
modeling techniques focused on in this research, as presented in the following 
two sections.

 3.3.3.2 Hierarchical variable structure: Two-Level Variable Structure

Hierarchical variable structure facilitates the inclusion of different sets of design 
variables during parametric geometric modeling. It exists in a product design in 
which a number of substructures and parts are hierarchically assembled into a 
larger system (Yoshimura and Izui, 2002). Design variables in such product designs 
may be from different levels of the hierarchy; thus naturally, they are organized in a 
hierarchical variable structure, rather than a flat, one-dimensional array structure. 
This hierarchical structure consists of high-level and low-level variables. The value 
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of a high-level variable determines the selection of low-level variables. A low-level 
variable can correspond to one or multiple values of a high-level variable or does 
not correspond to any values of a high-level variable. Thus, the dimensionality of the 
design space defined by the high-level and low-level variables is changeable.

Two-Level Variable Structure is a particular hierarchical variable structure. It is 
useful, especially when there are many design concepts (or directions) to be defined 
parametrically. In the example shown in FIG.3.8 (top left), the high-level variable 
(i.e., input variable 0 called “Concept”) is used to define the type of design concepts 
(or directions) to be investigated; and the low-level variables (i.e., the rest input 
variables) are used to define the geometries related to the design concepts (or 
directions). Python scripting is used to realize this two-level variable structure. 
As shown by the scripting in FIG.3.8 (bottom), the high-level variable controls the 
switch from one design concept (or direction) to another; that is, when the value of 
the high-level variable is determined, a subset of low-level design variables is chosen 
from the full variable set, in order to parametrically define the geometries of the 
design concept (or direction) that corresponds to the value of the high-level variable.
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d = v4

# input variables for Concept2: v1, v2, v3, v5, v6 #
if concept == 2: 

a = v1
b = v2
c = v3
e = v5
f = v6

# input variables for Concept3: v7, v8 #
if concept == 3: 

g = v7
h = v8

Python scripting for the hierarchical variable structure 

FIG. 3.8 The overall structure of parametric schemata

Note: A two-level hierarchical variable structure (top left); geometry generation modules (top middle); performance simulation 
modules (top right); Python scripting for the hierarchical variable structure (bottom).
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 3.3.3.3 Modular programming: Geometry and Simulation 
Modular Programming

Modular programming facilitates the modification of parametric schemata. It 
structures parametric schemata into different modules. A module in a dataflow 
programming language is defined as a sequence of program instructions bounded 
by entry and exit points; and it performs a particular task (Wong and Sharp, 1992). 
The entry points collect data the module requires; the exit points return data the 
module produces; and the program instructions in between can be evoked by passing 
data through the module. Parametric schemata structured using the modular 
programming principle are considered consistently better understood, especially 
when the parametric model is complex or used in a multi-disciplinary collaborative 
design environment (Davis et al., 2011).

Geometry and Simulation Modular Programming are respectively used to create 
geometry generation modules and performance simulation modules. In the example 
shown in FIG.3.8 (top middle and top right), each geometry module corresponds to a 
group of program instructions for defining a particular design concept (or direction); 
and each simulation module corresponds to a group of program instructions for 
defining a particular type of performance simulations.

 3.4 Conclusion

This chapter concludes by summarizing the main research results (Section 3.4.1), 
and providing concluding remarks (Section 3.4.2).

 3.4.1 Main research results

The main research results of this chapter include the following:

 – The direction of the method development has been identified, which is to enhance 
the information and knowledge extraction for Optimization Problem Re-Formulation 
(Re-OPF), more precisely, to properly arrange relevant actions associated with the 
information and knowledge extraction. To support those actions, computational 
support needs to be provided.
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 – The three phases of the proposed method have been specified: Phase-I: Optimization 
Problem Initial-Formulation (Initial-OPF); Phase-II: Optimization Problem Re-
Formulation (Re-OPF); and Phase-III: Optimization Problem Solving (OPS). Among 
these phases, the re-formulation phase is the key one. The incorporation of the re-
formulation phase is the main innovation which differentiates the proposed method 
from traditional methods (that do not incorporate the re-formulation phase).

 – The two subtypes of the proposed method have been specified: Subtype-I: Non-
dynamic, Interactive Re-formulation method; and Subtype-II: Dynamic, Interactive 
Re-formulation method. They both consist of the aforementioned three phases. They 
are distinguished from each other mainly by their variations in the re-formulation 
phase. Their flexibility allows the proposed method to be applied in different design 
contexts, including the context that highlights reducing existing design possibilities 
and the context that highlights sparking new design possibilities.

 – Some important computational techniques adopted in the Optimization Problem 
Re-Formulation (Re-OPF) phase have been specified. They include but are not 
limited to: Uniform Latin Hypercube Sampling for data generation; Self-Organizing 
Map, Hierarchical Clustering, Smoothing Spline Analysis of Variance for information 
and knowledge extraction; Two-Level Variable Structure, Geometry and Simulation 
Modular Programming for MOO model re-formulation.

 3.4.2 Concluding remarks

In conclusion, the proposed method highlights the importance of dynamic and 
interactive Optimization Problem Re-Formulation (Re-OPF), specifically, the 
importance of the techniques directly and indirectly useful for information and 
knowledge extraction. The knowledge-supported re-formulation makes it possible to 
shift objective space and design space to include unexplored areas and/or exclude 
existing areas, which is beneficial for achieving a more reliable optimization problem, 
and obtaining reliable design solutions. The proposed method, including the two 
subtypes, will be applied to two case studies of the conceptual design of indoor 
sports halls in Chapter 5 and 6.
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4 Software workflow 
development
This chapter proposes a Multi-Objective and Multi-Disciplinary Optimization 
(MOMDO) software workflow. The workflow is designed for the implementation of the 
proposed method. It is realized by a newly developed integration node.

The chapter is structured as follows. First, it introduces the specific purpose and 
direction of the workflow development (Section 4.1). Then, it describes the basic 
software types to be integrated, and the selection and integration of specific 
software (Section 4.2). Finally, it concludes by summarizing the main research 
results and providing concluding remarks (Section 4.3).

Section 4.2 involves contents published in Journal Articles 1-2 (Yang et al., 2018; 
Yang et al., 2020) and Conference Paper 1 (Yang et al., 2015).

 4.1 Introduction

The specific purpose of the workflow development is to establish an improved Multi-
Objective and Multi-Disciplinary Optimization (MOMDO) software workflow where 
Grasshopper and modeFRONTIER are integrated in a better manner.

The necessity of an improved workflow has been shown in the literature review 
in Chapter 2. As stated in Section 2.5.3, the promising type of workflow reviewed 
(i.e., ESTECO’s earliest in-house workflow that integrates Grasshopper and 
modeFRONTIER) still has room for improvement in terms of the software integration. 
According to the author’s tests and the discussions with ESTECO’s developers, the 
aforementioned promising workflow adopted a Grasshopper and modeFRONTIER 
integration plug-in that had limitations, such as tricky communication initiation, 
unstable automatic data exchange, and inefficient integration preparation. Thus, 
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a promising direction of the workflow development is to improve the integration 
between Grasshopper and modeFRONTIER, more precisely, to create a better 
integration plug-in that can improve the communication initiation, stabilize the 
automatic data exchange, and simplify the integration preparation. The workflow 
development is based on the collaboration between the Chair of Design Informatics 
at TU Delft and ESTECO SpA.

 4.2 The Grasshopper-modeFRONTIER 
(Gh-mF) workflow

The proposed workflow is developed by integrating different types of software tools. 
This section first describes the basic software types to be integrated (Section 4.3.1); 
and then, it explains the selection of specific software tools (Section 4.3.2), and how 
the selected software tools are integrated (Section 4.3.3).

 4.2.1 Basic software types to be integrated

According to Bernal et al. (2015), solution generation, solution evaluation, and 
solution selection software tools are relevant for early design stages; and they are 
worth being integrated by using a custom system-to-system approach. The software 
integration, or tool integration, not only refers to tool interoperability but also tool 
automation. The tool interoperability can enable multiple tools to communicate 
and cooperate with each other, regardless of differences in the implementation 
language, the execution environment, or the model abstraction (Madiajagan 
and Vijayakumar, 2008). The tool automation can automate data flows between 
interconnected tools, getting rid of the need to click icons and manually enter data to 
perform tasks (Díaz et al., 2017).

It is also worth integrating parametric modeling, performance simulation, and 
optimization software tools for early design stages, as these tools are specific 
examples of solution generation, solution evaluation, and solution selection software 
tools. Such integration can be further simplified as the integration of parametric 
modeling and optimization software tools because performance simulation software 
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tools may have already been embedded in those tools. The parametric modeling 
tool considered here is Visual Programming (VP) software (Boshernitsan and 
Downes, 2004); and the optimization tool considered here is Process Integration and 
Design Optimization (PIDO) software (Flager et al., 2009a).

The integration of Visual Programming (VP) software and Process Integration and 
Design Optimization (PIDO) software is needed in this research because it can 
offer necessary computational techniques for Multi-Objective Optimization (MOO) 
design methods, as briefly mentioned in Section 2.5.1. Without such integration, 
it is practically infeasible to conduct performance-based optimization, due to the 
involvement of many labor-intensive manual operations (e.g., manually generating 
geometries and inputting them for simulation runs, manually inputting performance 
results for optimization runs). In contrast, with such integration, it would be more 
convenient to conduct performance-based optimization, given the presence of 
automatic operations (e.g., automatic data manipulation and transfer). Moreover, 
such integration is needed also because it has the potential to provide computational 
techniques necessary for supporting Optimization Problem Re-Formulation (Re-OPF).

 4.2.2 The selection of specific software

Numeric data 
& non-numeric data

Save 3D geometric 
models and images 

Data analysis and visualization environment

Karamba3D 

Daysim 

Automatic data exchange

Numeric 
input data

Numeric 
output data

Save pairs of numeric 
input and output data

EnergyPlus 

CAE

CAE

CAE

Grasshopper

FIG. 4.1 The software tools involved in the proposed workflow (revised from Yang et al., 2020)

Note: Grasshopper and simulation software (top left); modeFRONTIER and simulation software (top right); and a database for 
storing numeric and non-numeric data (bottom).
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Multiple specific software tools are selected to build the proposed workflow. As 
illustrated in FIG.4.1, these software tools include: McNeel’s Grasshopper, ESTECO’s 
modeFRONTIER, and simulation software Daysim, EnergyPlus, and Karamba3D (that 
are embedded in Grasshopper).

 4.2.2.1 Choice of Grasshopper

McNeel’s Grasshopper is a typical Visual Programming (VP) tool used for parametric 
design. It is the most prevalent parametric modeling tool among architectural design 
professionals, due to its intuitive way of exploring geometries without having to know 
scripting (Cichocka et al., 2017).

McNeel’s Grasshopper has been chosen to build the proposed workflow, mainly 
because it can facilitate implementing Two-Level Variable Structure, Geometry and 
Simulation Modular Programming (mentioned in Section 3.3.3). To be more specific, 
Grasshopper can implement Two-Level Variable Structure by using Grasshopper’s 
Python script editor and implement Geometry and Simulation Modular Programming 
by using Grasshopper’s group and cluster features, as presented in Appendix IV.

It is also worth noting that Grasshopper is not the only possible choice for 
implementing the above techniques. Other possible choices include Bentley’s 
GenerativeComponents, Autodesk’s Dynamo Studio, and Sidefx’ Houdini, etc.

 4.2.2.2 Choice of modeFRONTIER

ESTECO’s modeFRONTIER is a common Process Integration and Design Optimization 
(PIDO) tool used for multi-objective and multi-disciplinary engineering optimal-
design. It is prevalent in many engineering industries, due to its capability of offering 
a seamless coupling with third-party engineering tools, enabling the automation of 
simulation processes, and facilitating analytic decision making etc.

ESTECO’s modeFRONTIER has been chosen to build the proposed workflow, 
primarily given the fact that it can facilitate implementing Uniform Latin Hypercube 
Sampling, Self-Organizing Map, Hierarchical Clustering, and Smoothing Spline 
Analysis of Variance (mentioned in Section 3.3.1 and 3.3.2). To be more specific, 
modeFRONTIER can implement Uniform Latin Hypercube Sampling by using 
modeFRONTIER’s design of experiments node, implement Self-Organizing Map 
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and Hierarchical Clustering by using modeFRONTIER’s multivariate analysis tool, 
implement Smoothing Spline Analysis of Variance by using modeFRONTIER’s 
sensitivity analysis tool, implement Five-Number Summary by using 
modeFRONTIER’s distribution analysis chart, and implement Combined Data 
Visualization by using modeFRONTIER’s run analysis interface, as presented in 
Appendix IV.

It is also worth noting that modeFRONTIER is not the only possible choice for 
implementing the above techniques. Other possible choices include Phoenix 
Integration’s ModelCenter, Noesis Solutions’ Optimus, and Dassault Systèmes’ 
Isight, etc.

 4.2.2.3 Choice of simulation software

Different kinds of simulation software are important tools for performance-based 
design. They are commonly used in architectural design, especially in a multi-
disciplinary design environment.

Daylight simulation software Daysim, energy simulation software EnergyPlus, 
and structural simulation program Karamba3D have been chosen to build the 
proposed workflow, considering that they can facilitate implementing Integrated 
Dynamic Modeling (Negendahl, 2015) - they can be combined with Grasshopper. 
To be more specific, Daysim and EnergyPlus are combined with Grasshopper by 
using Grasshopper’s plug-ins Ladybug and Honeybee; and Karamba3D itself is 
Grasshopper’s plug-in.

It is also worth noting that the above kinds of simulation software are not the only 
possible choices. There can be various choices of third-party simulation software, 
which makes it possible to expand or customize the proposed workflow, and thus 
adapt to various needs in multi-disciplinary design environments. For instance, 
structural simulation software SAP2000 is another possible choice; it can be 
combined with Grasshopper by using Grasshopper’s plug-in Geometry Gym; or it can 
also be combined with modeFRONTIER by using an Excel file (Rizzian et al., 2017).
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 4.2.3 The integration of specific software

The integration of Grasshopper and modeFRONTIER is the key to the proposed 
workflow. Such integration is achieved by using a newly developed integration 
plug-in called Grasshopper-modeFRONTIER (Gh-mF) node. The development of the 
new Gh-mF node starts with an existing prototype version. During the development 
process, at least two work-in-progress versions were produced. Based on these 
versions, the formal version has been finalized.

 4.2.3.1 The prototype version of the integration node

The prototype version of Gh-mF node previously developed by ESTECO SpA 
aimed to preliminarily investigate the feasibility of integrating Grasshopper 
and modeFRONTIER. This version adopted a two-click approach to initiate 
the communication between Grasshopper and modeFRONTIER, due to some 
issues in using Grasshopper’s API. According to the original integration 
scripts, first, by clicking a starting toggle from “false” to “true” in Grasshopper, 
Grasshopper starts to check for a message to be sent from modeFRONTIER 
every 10 milliseconds for 2000 times; thus, this gives the users a 20 second time 
slot to click a run icon in modeFRONTIER to initiate the communication. During 
the communication, Grasshopper is always kept alive to exchange data with 
modeFRONTIER automatically.

The prototype version of Gh-mF node has shown the feasibility to integrate 
Grasshopper and modeFRONTIER. However, it doesn’t work all the time due to 
undetermined reasons. According to the author’s tests, the following issues may be 
responsible for the sporadic malfunctions: it may fail to initiate the communication 
(which can be associated with the use of the two-click initiation approach); when 
the communication is occasionally initiated, unexpected connection errors may 
occur during the automatic data exchange (which can be associated with the way 
Grasshopper and modeFRONTIER communicate). Given the above limitations, new 
improved versions of Gh-mF node need to be developed. Unlike the prototype version 
that was created by using modeFRONTIER’s EasyDriver feature, the new versions 
are expected to be created by using modeFRONTIER’s more advanced myNODE 
feature (Duggan et al., 2012). The myNODE feature can pack integration scripts 
into a myNODE file that will be installed in modeFRONTIER. Once the myNODE file is 
installed, an integration plug-in is developed successfully.
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 4.2.3.2 The first version of the integration node

The first version of Gh-mF node developed in this research aims to overcome 
the limitations of the prototype version (i.e., tricky communication initiation and 
unstable automatic data exchange). This version adopts a one-click approach to 
initiate the communication between Grasshopper and modeFRONTIER, by taking 
advantage of Grasshopper’s API. According to the new integration scripts, first, by 
clicking the run icon in modeFRONTIER, modeFRONTIER generates external input 
files, launches Grasshopper, and opens a Grasshopper file (where the starting 
toggle is always set to “true”); then, Grasshopper reads the external input files and 
generates external output files automatically; next, the Grasshopper file is closed and 
Grasshopper is shut down; last, modeFRONTIER collects the external output files, 
generates new external input files for driving the communication forward. During the 
communication, Grasshopper is launched and shut down repeatedly.

The first version of Gh-mF node manages to improve the communication initiation 
and stabilize the automatic data exchange (by avoiding the two-click initiation 
approach and changing the way Grasshopper and modeFRONTIER communicate). 
However, it still involves time-consuming manual operations in preparing the 
integration of Grasshopper and modeFRONTIER. For instance, the users have to 
manually create the templates of the external files in Grasshopper, manually specify 
variable names according to the templates in modeFRONTIER, and manually create 
Grasshopper components for saving 3D geometries. These manual operations 
make the integration preparation inefficient. Given the above limitation, a newer 
version of Gh-mF node needs to be developed. Unlike the first version that relies 
on an indirect communication approach (with the need of external files), the newer 
version is expected to rely on a direct communication approach (without the need of 
external files).

 4.2.3.3 The second version of the integration node

The second version of Gh-mF node developed in this research aims to overcome 
the limitation of the first version (i.e., inefficient integration preparation). This 
version gets rid of manual operations to save time for the integration preparation, 
by taking advantage of Grasshopper’s API. According to the newer integration 
scripts, Grasshopper and modeFRONTIER can directly communicate with each other; 
that is, the input and output variables involved in Grasshopper can be recognized 
and propagated to modeFRONTIER automatically; and 3D geometries generated in 
Grasshopper can be saved to modeFRONTIER automatically.
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The second version of Gh-mF node manages to simplify the integration preparation 
(by getting rid of the manual operations). However, it is still a work-in-progress 
version, rather than a formally supported direct integration node by modeFRONTIER. 
Fine-tuning is needed to get the formal node.

In order to verify the aforementioned two work-in-progress versions, they have been 
tested in some simplified case studies (D’Aquilio et al., 2016; Sileryte et al., 2016).

 4.2.3.4 The formal version of the integration node

FIG. 4.2 The formal Gh-mF node available in modeFRONTIER (image from ESTECO’s website https://www.esteco.com/
corporate/volta-and-modefrontier-release-2020-winter-now-available)
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Following several rounds of development and a final check, the formal version of Gh-
mF node was finalized. It is a formally supported direct integration node available in 
modeFRONTIER, as illustrated in FIG.4.2.

The software workflow established by using the new Gh-mF node can automate the 
data exchange between Grasshopper and modeFRONTIER (see FIG.4.1). During the 
data exchange, Grasshopper is responsible for receiving numeric input data and 
generating geometries; the selected types of simulation software are responsible 
for receiving geometries and generating numeric output data; and modeFRONTIER 
is responsible for receiving numeric output data and generating new numeric input 
data for driving the automation forward. The interfaces of the automatic data 
exchange are shown in FIG.4.3. Moreover, the software workflow can also allow post-
processing (i.e., analyzing and visualizing) the numeric and non-numeric data stored 
in a database. The interfaces of the post-processing are shown in FIG.4.4.

FIG. 4.3 Interfaces of the automatic data exchange (Yang et al., 2018)

TOC



 142 Design as  Exploration

FIG. 4.4 Interfaces of the post-processing (Yang et al., 2018)

 4.3 Conclusion

This chapter concludes by summarizing the main research results (Section 4.3.1) 
and providing concluding remarks (Section 4.3.2).

 4.3.1 Main research results

The main research results of this chapter include the following:

 – The direction of the workflow development has been identified, which is to improve 
the integration between Grasshopper and modeFRONTIER, more precisely, to create 
a better integration plug-in that can improve the communication initiation, stabilize 
the automatic data exchange, and simplify the integration preparation.
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 – The software tools involved in the proposed workflow have been specified: 
McNeel’s Grasshopper, ESTECO’s modeFRONTIER, and simulation software Daysim, 
EnergyPlus, and Karamba3D (that are embedded in Grasshopper). These software 
tools are selected for their capability of implementing the computational techniques 
adopted in the Optimization Problem Re-Formulation (Re-OPF) phase.

 – The way of integrating Grasshopper and modeFRONTIER has been described. 
They are integrated by using a newly developed integration plug-in called 
Grasshopper-modeFRONTIER (Gh-mF) node. The new Gh-mF node is developed 
based on an existing prototype version; and it can improve the existing prototype 
version in terms of the communication initiation, automatic data exchange, and 
integration preparation.

 4.3.2 Concluding remarks

In conclusion, the proposed workflow benefits from the integration of Grasshopper 
and modeFRONTIER, specifically, the integration achieved by using the newly 
developed integration plug-in. The new Gh-mF node can help implement the 
proposed method in a more reliable, stable and efficient manner, compared with 
the prototype version. The proposed workflow, established by using the new Gh-mF 
node, will be applied to two case studies of the conceptual design of indoor sports 
halls in Chapter 5 and 6.
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5 Case Study I
This chapter presents Case Study I. In this case study, the Subtype-I method (i.e., 
non-dynamic method) is applied to the conceptual design of the overall geometry of 
a sports competition hall with the aid of the new Gh-mF node. This case study was 
selected to demonstrate and verify this subtype method primarily because it focused 
on the relatively late sub-phase of the conceptual design where convergent thinking 
is often highlighted or the number of parameters is usually high.

The chapter is structured as follows. First, it introduces the purpose of Case Study 
I (Section 5.1). Then, it provides the background of the project involved in this case 
study (Section 5.2). Next, it presents the results derived from each phase of the 
non-dynamic method (Section 5.3, 5.4, 5.5). Finally, it concludes by summarizing the 
main research results, identifying possible extensions of the non-dynamic method, 
and providing concluding remarks (Section 5.6).

This case study has collaborated with Arup Amsterdam. Ir. Shibo Ren, the senior 
structural engineer, helped to develop the structural model of the case and edit 
relevant texts. Sections 5.2-5.5 involve contents published in Journal Article 1 (Yang 
et al., 2018) and Conference Paper 2 (Yang et al., 2015).

 5.1 Introduction

The purposes of Case Study I are multifold. First of all, this case study demonstrates 
the use of the Subtype-I method (i.e., non-dynamic method). Second, it verifies 
the benefits of adopting the method and the factors affecting the behaviors of the 
method. Third, it provides valuable feedback for possible extensions of the method.

This case study assumes that the design context is to highlight reducing existing 
design possibilities, such as many circumstances in the relatively late sub-phase of 
the conceptual design. Thus, the Subtype-I method (i.e., non-dynamic method) is 
adopted. This subtype method contains three phases; and the re-formulation phase is 
linear, as illustrated in FIG.5.1.
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Phase-I: 
Optimization 

Problem 
Initial-

Formulation

Data 
Generation

Information & 
Knowledge
Extraction

MOO Model 
Re-formulation

Satisfied 
Model?

Phase-III: 
Optimization 

Problem 
Solving

Yes

Phase-II: Optimization Problem Re-Formulation
(Subtype-I: Non-dynamic, Interactive Re-formulation method)

FIG. 5.1 The scheme of applying the Subtype-I method

Note: The shaded region corresponds to FIG.3.4.

 5.2 Project description

© Sun Yimin Studio 

© Sun Yimin Studio 

© Sun Yimin Studio © Sun Yimin Studio 

FIG. 5.2 Wuhan University gymnasium and the floor plans (revised from Yang et al., 2018)

Note: The exterior and interior views (left); the first-floor plan (middle); the second-floor plan (right). Image Source: Sun 
Yimin Studio.

This case study is based on a real project – Wuhan University gymnasium 
(see FIG.5.2). The project is designed by an interdisciplinary team, including the 
author, in Sun Yimin Studio of Architectural Design & Research Institute of South 
China University of Technology.
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The site of the project is located in Wuhan, China. According to Chinese building 
codes – Code for thermal design of civil building (GB 50176-2016) and Standard for 
daylighting design of buildings (GB 50033-2013), the project is in the Hot Summer 
and Cold Winter climate zone and the IV daylighting climate zone. More specifically, 
it is located on the Wuhan University campus in a historic district filled with Chinese 
traditional buildings.

The project contains a competition hall with grandstands. The size of the court 
is 40m × 70m, which meets the requirements of many dry sports activities (e.g., 
basketball, badminton, gymnastics). This case study manipulates the geometries 
of the roofs, skylights, external shadings, roof structures, and grandstands 
of the hall, in order to meet architectural, daylighting, structural, energy, and 
thermal performances.

 5.3 Phase-I involving one initial concept

Phase-I (i.e., Optimization Problem Initial-Formulation) of the Subtype-I method (i.e., 
non-dynamic method) involves one initial concept.

In Case Study I, the initial concept is a stair-like roof concept (Section 5.3.1). Based 
on this concept, a geometric parametric model and multi-disciplinary simulation or 
calculation models are created and integrated (Section 5.3.2), thus formulating an 
initial MOO model as the main output of this phase (Section 5.3.3).

 5.3.1 Initial concept generation

The initial concept is a stair-like roof concept proposed at the outset of the 
conceptual design (see FIG.5.3). This concept is actually a typical top daylighting 
concept known as Monitor Skylights (CIBSE, 1999; Beltran, 2005; Harntaweegonsa 
and Beltran, 2007; Lechner, 2014; Al-Obaidi and Rahman, 2016; Mavridou and 
Doulos, 2019). It is proposed, given that the stair-like roof shape can facilitate 
the use of daylight and blend into the surroundings filled with Chinese traditional 
buildings. For simplicity, the skylights placed on the roof ridge in the real project are 
not considered here.
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FIG. 5.3 The initial concept in Case Study I (revised from Yang et al., 2018)

Note: The stair-like roof concept (left), possible geometric variations generated based on the concept (right).

 5.3.2 Multi-objective optimization model initial formulation

 5.3.2.1 Geometric parametrization

A geometric parametric model is created, based on the initial stair-like roof concept 
illustrated in FIG.5.4. The concept implies a vast number of possible building 
geometries. The complexity level of the geometries is similar to the real project, 
given that the geometries include four parts - the geometries of the grandstands, 
roof envelope, external shadings, and roof structure. 

FIG. 5.4 The initial parametric model in Case Study I (revised from Yang et al., 2018)

Note: The high-level variable is “Roofsteps” which defines different roof steps in a quarter of the hall. The grandstands, roof 
envelope, external shadings of the initial parametric model (left); the roof structure of the initial parametric model (right); the 
above building parts of the initial parametric model viewed on the XY plane (middle).
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TabLe 5.1 The initial design variables in Case Study I (Yang et al., 2018)

Bu
ild

in
g 

Pa
rt

s

Va
ria

bl
e 

Fa
m

ily

Variable Full Name Variable Short 
Name

Data 
Type

Lower 
Bound

Upper 
Bound

Inter-
vals

Bench-
mark

G
ra

nd
-

st
an

d

Se
at

 R
ow

 
N

um
be

r Seat row number (of the upper tier) SeatRows int. 15 (19) 20 (24) 1 11

Bu
ild

in
g 

en
ve

lo
pe

Ro
of

 S
te

p 
N

um
be

r Number of roof steps RoofSteps int. 2 5 1 2

Ro
of

 H
ei

gh
t Height of the highest ridge (m) TopHeight float 25.00 

(27.00)
30.00 
(32.00)

0.01 26.00

Height of the lowest ridge (m) BottomHeight float 15.00 
(17.00)

20.00 
(22.00)

0.01 24.00

Ri
dg

e 
Di

vi
si

on

Portion of the ridge of sub-roof 1 R1 float 0.20 0.90 0.01 0.9

Portion of the ridge of sub-roof 2 R2 float 0.20 0.90 0.01 0.2

Portion of the ridge of sub-roof 3 R3 float 0.20 0.90 0.01 -

Portion of the ridge of sub-roof 4 R4 float 0.20 0.90 0.01 -

Portion of the ridge of sub-roof 5 R5 float 0.20 0.90 0.01 -

Fr
on

t R
ow

 D
iv

is
io

n

Portion of the front row under 
sub-roof 1

F1 float 0.20 0.90 0.01 0.9

Portion of the front row under 
sub-roof 2

F2 float 0.20 0.90 0.01 0.2

Portion of the front row under 
sub-roof 3

F3 float 0.20 0.90 0.01 -

Portion of the front row under 
sub-roof 4

F4 float 0.20 0.90 0.01 -

Portion of the front row under 
sub-roof 5

F5 float 0.20 0.90 0.01 -

Ex
te

rn
al

 
sh

ad
in

g

Sh
ad

in
g 

Di
m

en
si

on Overhang depth in X axis (m) OverhangX float 0.10 3.00 0.01 3.80

Overhang depth in Y axis (m) OverhangY float 0.10 3.00 0.01 2.20

>>>
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TabLe 5.1 The initial design variables in Case Study I (Yang et al., 2018)
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e 
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Variable Full Name Variable Short 
Name

Data 
Type

Lower 
Bound

Upper 
Bound

Inter-
vals

Bench-
mark

Ro
of

 s
tr

uc
tu

re

Sp
an

 
Pa

rt
iti

on Centre Span (m) CentreSpan float 0.50 5.00 0.01 4.20

Middle Span Partition (fraction) MiddleSpan float 0.10 0.90 0.01 0.50

Side Span (m) SideSpan float 0.50 5.00 0.01 4.20

Be
am

 V
er

tic
al

 D
is

ta
nc

e

Beam vertical distance for sub-roof 
1 (m)

BVD1 float 2.00 7.00 
(6.00)

0.01 4.60

Beam vertical distance for sub-roof 
2 (m)

BVD2 float 2.00 7.00 
(6.00)

0.01 2.00

Beam vertical distance for sub-roof 
3 (m)

BVD3 float 2.00 7.00 
(6.00)

0.01 -

Beam vertical distance for sub-roof 
4 (m)

BVD4 float 2.00 7.00 
(6.00)

0.01 -

Beam vertical distance for sub-roof 
5 (m)

BVD5 float 2.00 7.00 
(6.00)

0.01 -

Re
pe

at
ed

 U
ni

t N
um

be
r

Repeated unit number for sub-roof 
1

RUN1 int. 1 5 1 5

Repeated unit number for sub-roof 
2

RUN2 int. 1 5 1 1

Repeated unit number for sub-roof 
3

RUN3 int. 1 5 1 -

Repeated unit number for sub-roof 
4

RUN4 int. 1 5 1 -

Repeated unit number for sub-roof 
5

RUN5 int. 1 5 1 -

Note: The variable marked in dark green represents the high-level variable. The variables marked in light green represent the 
low-level variables that can be reduced or added depending on the value of the high-level variable, while those marked in 
medium green represent the low-level variables that persist regardless of the value of the high-level variable. The values in 
brackets are the new variable bounds of the updated MOO model that is described in Section 5.4.1.1.

The geometries are initially parameterized by the design variables shown in 
TABLE 5.1. Given that the competition hall is symmetric along the X and Y axes, only 
a quarter of the hall is parametrically defined. The design variables are organized in 
a two-level hierarchical structure, to facilitate the geometric parameterization of the 
four building parts. More details are provided below.
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Geometric parameterization of the grandstands

The geometric parameterization of the grandstands specifically refers to the creation 
of parametric schemata which define the geometries of two upper tiers having stair-
like boundaries. The parameterization is carried out using a parametric grandstand 
design tool developed based on shape grammar (Sun et al., 2013).

For defining the upper tier, the variable SeatRows is used (see FIG.5.4, left), apart 
from other input geometries (e.g., the front-row profile, back-row profile, focus point, 
aisle axis) and input parameters (e.g., the C-value, row distance, aisle width, exit 
width, seat width, seat number in a row). This variable determines how far the far-
back edge (row) of the upper tier is away from the front edge (row). To achieve the 
stair-like boundary, the back edges (i.e., those parallel to the Y axis at the back of the 
upper tier) are located evenly horizontally and vertically; and their number is equal 
to the number of sub-roof envelopes. That is, the horizontal and vertical distances 
between the far-back edge of the upper tier and the front edge are equally divided 
by the number of sub-roof envelopes; then, the results are used as the horizontal 
and vertical spacing between adjacent back edges. Moreover, the lengths of the 
back edges are determined by the geometries of sub-roof envelopes (which will be 
explained below).

Geometric parameterization of the roof envelope

The geometric parameterization of the roof envelope specifically refers to the 
creation of parametric schemata which define the geometry of a stair-like roof 
envelope consisting of varying sub-roof envelopes. The parameterization involves 
defining the division and elevation of the roof envelope.

For defining the division of the roof envelope, the variable “RoofSteps” and the 
variables in the “Ridge division” and “Front edge division” families are used (see 
FIG.5.4, left), to calculate the length of the ridge of each sub-roof envelope (denoted 
by Lri and Lr1-r5), and the length of the upper tier front edge segment under each 
sub-roof envelope (denoted by Lfi and Lf1-f5), according to the equations (1) and (2). 
The results displayed on the XY axes can be used to determine the division of the 
roof envelope (see FIG.5.4, middle).

For defining the elevation of the roof envelope, the variables TopHeight and 
BottomHeight are used (see FIG.5.4, left), to calculate the equal spacing between 
adjacent ridges (denoted by S), according to the equation (3). The results can be 
used to determine the height of the ridge of each sub-roof envelope.

TOC



 154 Design as  Exploration

L
L R

R
ri

r i

j

n
j

�
��
*

1   

(1)

L
L F

F
fi

f i

j

n
j

�
��
*

1   

(2)

S
H H
n
t b�
�
�1   

(3)

Where

Lr = half-length of the entire ridge (i.e., a constant value: 48 meters).

Lf = half-length of the entire upper tier front edge (i.e., a constant 
value: 44.5 meters).

Ri or Rj = the portion of the ridge of a sub-roof envelope i or each sub-roof envelope j 
(i.e., the variables in the “Ridge division” family).

Fi or Fj = the portion of the upper tier front edge segment under a sub-roof envelope 
i or each sub-roof envelope j (i.e., the variables in the “Front edge division” family).

Ht = the height of the ridge of the highest sub-roof envelope (i.e., the 
variable TopHeight).

Hb = the height of the ridge of the lowest sub-roof envelope (i.e., the 
variable BottomHeight).

n = number of sub-roof envelopes or roof steps (i.e., the variable “RoofSteps”).

The bounds and intervals of the above variables are tuned carefully, to avoid too 
small sub-roof envelopes, and too small gaps between sub-roof envelopes, while 
maintaining rich variability of the roof.

A two-level hierarchical variable structure is used to facilitate the exploration of the 
sub-roof envelopes that vary in number and shape. The high-level variable is the 
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variable “RoofSteps” marked in dark green in TABLE 5.1. The low-level variables 
include those in the “Ridge division” and “Front edge division” families marked 
in light green and those in the “Roof height” family marked in medium green in 
TABLE 5.1. When the value of the “RoofSteps” changes, a different set of variables 
in the “Ridge division” and “Front edge division” families are selected automatically 
to define the geometries of the sub-roof envelopes. In this way, the geometric 
complexity of the roof can change considerably in a convenient way.

The geometries of the sub-roof envelopes and the geometries of the upper tiers 
use each other as reference. On one hand, the horizontal length of each sub-roof 
envelope is calculated by using the horizontal location of the associated upper tier 
back edge; and the height of the lowest edge of each sub-roof envelope is calculated 
by using the vertical location of the associated upper tier back edge. On the other 
hand, the length of each upper tier back edge is determined by the length of the 
lowest edge of the associated sub-roof envelope.

Geometric parameterization of the roof structure

The geometric parameterization of the roof structure specifically refers to the 
creation of parametric schemata which define the geometry of a large-span steel 
structure for the stair-like roof envelope. The parameterization involves defining 
the span of the structure, the numbers of repeated structural units, and the vertical 
distances between beams.

For defining the span of the structure, the variables CentreSpan and SideSpan are 
used (see FIG.5.4, right), to divide a half span into three parts along the X axis; either 
of the variables is identical for each sub-roof structure. The variable MiddleBeam 
is used (see FIG.5.4, middle), to determine the position of the middle beam of the 
lowest sub-roof structure, within the middle part of a half span; a lower value of this 
variable means that the middle beam of the lowest sub-roof structure is closer to the 
building center, and the middle beams of the other sub-roof structures align with the 
beam of the lowest sub-roof structure on the Y axis.

For defining the numbers of repeated structural units and the vertical distances 
between beams, the variables in the “Repeated unit number” and “Beam vertical 
distance” families are used (see FIG.5.4, right). In the either family, the variables are 
independent of each other; each of the variables relates to the structure of a different 
sub-roof.
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The bounds and intervals of the above variables are tuned based on some 
structural rules of thumb, to avoid unfeasible design solutions, while maintaining 
rich variability of the structure. For instance, the variable bounds in the “Repeated 
unit number” family can ensure that the top-width of each structural unit is in 
between 3 to 9 meters, avoiding a too narrow or too wide unit.

A two-level hierarchical variable structure is used to facilitate the exploration of the 
sub-roof structures that vary together with the sub-roof envelopes. The high-level 
variable is still the variable “RoofSteps” marked in dark green in TABLE 5.1. The 
low-level variables include those in the “Repeated unit number” and “Beam vertical 
distance” families marked in light green and those in the “Span partition” family 
marked in medium green in TABLE 5.1. When the value of the “RoofSteps” changes, 
a different set of variables in the “Repeated unit number” and “Beam vertical 
distance” families are selected automatically to define the geometries of the sub-roof 
structures. In this way, the geometric complexity of the roof structure can change 
considerably in a convenient way.

The geometries of the sub-roof structures use the geometries of the sub-roof 
envelopes as a reference. Specifically, all the structural members are created by 
using the boundaries of the sub-roof envelopes.

Geometric parameterization of the external shadings

The geometric parameterization of the external shadings specifically refers to the 
creation of parametric schemata which define the geometries of roof overhangs.

For defining the roof overhangs, the variables OverhangX and OverhangY are used 
(see FIG.5.4, left). They represent the amounts that the roof hangs over the top 
of the siding in the X and Y directions (i.e., east-west and north-south directions) 
respectively. Either of the variables is identical for each sub-roof envelope.

The geometries of the roof overhangs use the geometries of the sub-roof envelopes 
as a reference. Specifically, the roof overhangs are created by extending the sub-roof 
envelopes outwards.
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 5.3.2.2 Simulation integration

Multi-disciplinary simulation or calculation models are integrated with the geometric 
parametric model. The initial concept is meant to meet a set of multi-disciplinary 
performance requirements, including architectural, daylight, thermal, energy, and 
structural requirements. The completeness level of the requirements is similar to the 
real project. The requirements are initially represented by the performance measures 
shown in TABLE 5.2. There can be multiple performance measures for the same kind 
of performance requirement. They can be considered as objectives or constraints. 
More details are provided below.

TabLe 5.2 The initial performance measures in Case Study I (Yang et al., 2018)

Disciplines Performance Measures Objectives Constraints 
(to be calculated)

Constraints  
(set in models)

Architecture C-value - - 60 mm

Number of seats in the upper tier - > 3600 -

Minimum space check (SC) - > 15m -

Climate Daylight Modified Useful Daylight 
Illuminance (UDImod)

↑ - -

Modified Uniformity Ratio (URmod) ↑ - -

Thermal Operative temperature - - See TABLE 5.3

Energy Energy Use Intensity (EUI) ↓ - -

Structure Mass per square meter ↓ - -

Maximum utilization check (UC) - < 0.9 (failed 
members < 2% 
of the total)

-

Maximum displacement check (DC) - < 0.3 m -

Integration of architectural calculation

To obtain architectural performance feedback, a seat calculation model and a space 
calculation model are created. The inputs (i.e., geometries and parameters) and 
outputs (i.e., performance measures) of these models, and the software tools used 
for creating these models are specified below.
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First, the input geometries of the calculation models include the parameterized 
geometries of the upper tier grandstands and roof structure (described in 
Section 5.3.2.1). These parametrically changeable geometries determine the layouts 
of the seats on the upper tier grandstands and the locations of the bottom beams of 
the roof structure, and hence affect the seat and space calculations.

Second, the input parameters of the calculation models only include parameters 
(not variables) used to define the above geometries, such as the row distance, aisle 
width, exit width, seat width, seat number in a row. which are set according to related 
building codes or rules of thumb. Moreover, it should be noted that a C-value can be 
considered as a performance measure for the quality of a sightline (DCMS, 2008). 
In this case, the C-value of 60 mm is set as a simulation input, differing from other 
performance measures that are often treated as simulation outputs. This means that 
the C-value is fixed, and that the quality of sightlines is always guaranteed regardless 
of settings of other parameters.

Third, the output performance measures of the calculation models include 
Seat Number and Clear Height. All these measures are initially treated as 
optimization constraints.

Fulfilling seating capacity and clear space requirements is important for indoor sports 
halls to ensure their basic functions. The measure Seat Number is defined as the total 
number of seats on the upper tier grandstands and can be used to check whether the 
grandstands can accommodate a desired number of spectators or not. In this case, 
it is constrained to be above 3600 in optimization (i.e., Cons_Seat Number > 3600). 
The measure Clear Height is defined as the minimum height of the space above the 
court and under the bottom beams and can be used to check whether the indoor 
space is high enough to host a desired set of sports activities or not. In this case, it 
is constrained to be above 15m in optimization (i.e., Cons_Clear Height > 15m).

Finally, the software tools used for creating the calculation models are 
Grasshopper’s native components. These components are used to develop the 
parametric grandstand design tool (Sun et al., 2013), to facilitate the geometric 
parameterization and hence the seat and space calculations.
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Integration of climatic simulation

To obtain climatic performance feedback, a daylight simulation model and an 
energy simulation model are created and coupled. The inputs (i.e., geometries and 
parameters) and outputs (i.e., performance measures) of these models, and the 
software tools used for creating these models are specified below.

First, the input geometries of the simulation models include the parameterized 
geometries of the upper tier grandstands, roof envelope, and external shadings 
(described in Section 5.3.2.1), and the non-parameterized geometries of the lower 
tier grandstand and partitions. The gaps between adjacent sub-roof envelopes are 
the main locations through which daylight and solar heat gain are received. The 
external shadings over the gaps can reflect direct sunlight off.

Second, the input parameters of the simulation models include those common in the 
daylight and energy simulation models, those specific for each of the two models, 
and those related to coupling the two models.

The parameters common in the daylight and energy simulation models are set as 
follows. The same weather file of Wuhan derived from Chinese Standard Weather 
Data is used; the weather file contains hourly outdoor environmental data. The 
same geometry to mesh conversion setting which can save simulation time is used. 
The same occupancy schedule which can consider the peak and off-peak use of the 
building is used (see FIG.5.5).

FIG. 5.5 The occupancy schedule (Yang et al., 2018)

Note: Off-peak use without spectators from Monday to Friday (blue) and on Saturday (green); peak use with spectators on 
Sunday (orange).
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FIG. 5.6 The lighting control zones and boundary conditions (Yang et al., 2018)

Note: Two lighting zones of the court for daylight simulation (left); boundary condition for energy simulation (right).

The parameters specific for the daylight simulation model are set as follows. Two 
lighting control zones of the court are specified (see FIG.5.6, left). An analysis grid 
with 6-meter spacing is used as the basis for dividing these zones. Each cell of the 
grid contains an analysis point at the center; thus, 66 analysis points are used in 
total for the calculation of indoor illuminances. The two zones respectively cover the 
central and surrounding area of the court and may accommodate different sorts of 
activities; thus, different lighting control types and lighting power densities are set 
for these zones (see TABLE 5.3). Assumptions concerning optical material properties 
are set according to related building codes or rules of thumb (see TABLE 5.3).

The parameters specific for the energy simulation model are set as follows. Boundary 
conditions of the competition hall are specified (see FIG.5.6, right). Instead of 
modeling a full HVAC system, an ideal loads air system is used. This ideal system is 
assumed being able to mix air, and then add or remove heat and moisture at 100% 
efficiency (Big ladder, 2021). A generic heating system efficiency of 0.85 and a 
cooling system COP of 3 are set to scale the heating and cooling loads. Assumptions 
concerning thermal material properties are set according to related building codes 
or rules of thumb (see TABLE 5.3). Moreover, it should be noted that temperatures 
are actually simplified performance measures for ensuring thermal comfort. Here, 
setpoint and setback temperatures are set as simulation inputs, differing from other 
performance measures that are often treated as simulation outputs. This means that 
desired temperature ranges are guaranteed; in other words, thermal comfort as a 
constraint is always satisfied, regardless of settings of other input parameters.
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TabLe 5.3 Modeling assumptions for the daylight and energy models (Yang et al., 2018)

Daylight and energy model parameter Value

Wall reflectance 0.55

Floor reflectance 0.30

Roof reflectance 0.75

Window Transmittance 0.40

Lighting control type (lighting control group 1) Always on during occupied hours, automatic 
dimming, 300-lux target

Lighting control type (lighting control group 2) Always on during occupied hours, automatic 
dimming, 200-lux target

Lighting power density (lighting control group 1) 15.00 W/m2

Lighting power density (lighting control group 2) 9.00 W/m2

Wall U-value 0.72 W/m2 K

Ground floor U-value 3.70 W/m2 K

Roof U-value 0.34 W/m2 K

Window U-value 2.60 W/m2 K

Window SHGC 0.37

Window VT 0.62

Cooling thermostat setpoint temperature 27 °C

Cooling thermostat setback temperature 30 °C

Heating thermostat setpoint temperature 17 °C

Heating thermostat setback temperature 14 °C

Occupancy density 0.92 person/m2

Equipment power density 2 W/m2

Ventilation rate 15 m3/h person

Infiltration rate 4.5 m3/h m2

Note: The values are from the following standards or codes: Standard for daylighting design of buildings 
(GB 50033-2013); Standard for lighting design of buildings (GB 50034-2013); Design code for sports 
building (JGJ 31-2003); Design standard for energy efficiency of public buildings (GB50189-2015); Code 
for thermal design of civil building (GB 50176-2016); Graduations and test methods of air permeability, 
watertightness, wind load resistance performance for building external windows and doors (GB/T 7106-
2008).

The parameters related to coupling the daylight and energy simulation models are 
set as follows. This coupling is achieved by inputting lighting schedules derived 
from daylight simulation to energy simulation. A lighting schedule refers to a list of 
lighting power scalars (denoted by L) used to control a continuous dimming lighting 
system. The scalars are determined by the settings of a ballast loss factor and 
lighting setpoints, and the minimum indoor illuminance in a lighting zone, according 
to the equation (4). In this case, the scalars derived for either of the lighting zones, 
are a list of values ranging from 0.2 to 1.
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Where

L = lighting power scalars.

BLF = ballast loss factor (i.e., the percentage of peak energy used by a dimming 
system when fully dimmed down, e.g., 20%).

LS = lighting setpoints (i.e., illuminance targets for different lighting control groups, 
e.g., 300 lux and 200 lux respectively for the lighting control group 1 and 2, as 
shown in FIG.5.6, left).

Emin = the minimum indoor illuminance in a lighting zone.

Third, the output performance measures of the simulation models include a modified 
Useful Daylight Illuminance (UDImod), a modified Uniformity Ratio of Illumination 
(URmod), and Energy Use Intensity (EUI). All these measures are initially treated as 
optimization goals.

Improving daylight availability is important for indoor sports halls to reduce lighting 
energy use, meanwhile the amount of daylight introduced requires a proper control 
to avoid overheating or glare. The UDImod is a performance measure useful for 
measuring daylight availability and avoiding overheating or glare risks. It is actually 
a modified version of the original Useful Daylight Illuminance (UDI). The original UDI 
represents the annual occurrence of “useful” daylight illuminances that fall within the 
range of 100-2000 lux, that is, the percentage of occupied hours that an analysis 
point receives the “useful” daylight illuminances (Nabil and Mardaljevic, 2006). It is 
calculated based on indoor illuminances at all time steps and at one analysis point. 
It is difficult to understand the daylight availability condition of a larger space (e.g., 
the 40m × 70m court in question) when more analysis points are not considered. 
Thus, the original UDI is modified in order to allow multiple analysis points. The 
modified measure UDImod, also known as spatial UDI, is defined as the percentage of 
floor area (i.e., the percentage of analysis points) that receives the “useful” daylight 
illuminances for at least a specified percentage of occupied hours. It can reflect the 
daylight availability condition of the entire large space using a single value, thus 
facilitating its use in optimization. The UDImod is to be maximized (i.e., Max_UDImod). 
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Moreover, it should be noted that the percentage of occupied hours for which 
the “useful” daylight illuminances are received is subject to change in this case. 
Initially, this percentage is set to 60%, and the UDImod is more precisely denoted by 
UDImod-60.

Improving daylight uniformity (i.e., illumination uniformity) is important for indoor 
sports halls, as a uniform daylight condition can help athletes and audiences 
to perceive fast-moving balls. The URmod is a performance measure useful for 
measuring the average of daylight uniformity. It is actually a modified version of the 
original Uniformity Ratio (UR). The original UR represents the ratio between minimum 
illuminance and average illuminance. It is calculated based on indoor illuminances 
at all analysis points and at one time step. It is difficult to understand the general 
daylight uniformity condition in a longer time span (e.g., the time span of a year) 
when more time steps are not considered. Thus, the original UR is modified in order 
to allow multiple time steps. The modified measure URmod is defined as the mean of 
UR values at all time steps of a year when daylight is available. It can be used as an 
objective in optimization to improve average UR values. The URmod is to be maximized 
(i.e., Max_URmod).

Reducing operational energy use is important for indoor sports halls to achieve 
sustainable daily operation. The EUI is a performance measure useful for measuring 
operational energy use. It represents annual energy use (for lighting, heating, and 
cooling energy etc.) per square meter of floor area. It can aid in benchmarking the 
energy efficiency of buildings. The EUI is to be minimized (i.e., Min_EUI).

Finally, the software tools used for creating the simulation models are Grasshopper’s 
plug-ins called Ladybug and Honeybee which adopt Daysim and EnergyPlus 
simulation engines. These two engines are combined given the following facts. 
On one hand, EnergyPlus shows a significant limitation in calculating indoor 
illuminances, that is, it tends to overestimate the amount of daylight in indoor 
environments (Ramos and Ghisi, 2010). On the other hand, Daysim can model 
automated lighting control systems and provide hourly lighting schedules of different 
lighting zones to calculate final energy use in EnergyPlus (Futrell et al., 2015; Didoné 
and Pereira, 2011).
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Integration of structural simulation

To obtain structural performance feedback, a structural simulation model is 
created. The inputs (i.e., geometries and parameters) and outputs (i.e., performance 
measures) of this model, and the software tool used for creating this model are 
specified below.

First, the input geometries of the simulation model include the parameterized 
geometries of the roof structure (described in Section 5.3.2.1). The large-span steel 
roof structure is the main load-bearing structure. The central and largest-span 
sub-roof structure (see FIG.5.7) approximately spans over 91.6 meters between the 
farthest supports (i.e., the farthest locations the upper tiers can reach). According 
to the structural functions and practical engineering considerations, the structural 
elements are grouped into different types, as shown by the color coding. Steel beams 
in a diamond pattern in two layers form a one-way span steel frame, which is the 
main feature of the structural system. Steel cables are applied in the lateral direction 
providing lateral stability at multiple locations. A space truss is used at the gap area 
where two sub-roof envelops at different elevations interface with each other.

FIG. 5.7 Typical structure for one sub-roof (Yang et al., 2018)
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Second, the input parameters of the simulation model include those in relation to 
sections, buckling, and loads.

The parameters related to sections are set as follows. Each group of structural 
elements is only assigned with one identical section, in order to simplify the 
connection design and reduce the number of different joints. A list of standard steel 
section profiles (including HE beam and rod section profiles) is set for each group. 
S355 steel is set as the steel grade for all the section profiles.

The parameter related to buckling is set as follows. Unimportant secondary 
structural members which connect the main beams are not modelled directly in the 
buckling calculation, in order to increase the computational speed and simplify the 
model. To account for this, a reduction factor on the buckling length is introduced, 
and set for the lateral torsional buckling and the minor axis bending buckling 
calculation of the main beams.

The parameters related to loads are set as follows. The loads are defined based on 
Eurocode. The load combinations are set to involve the most typical loads, such as 
the structure’s self-weight, super imposed dead load, wind load, and snow load.

Third, the output performance measures of the simulation model include 
Steel Use Intensity (SUI), Utility, and Displacement. The SUI is initially treated 
as an optimization goal, the Utility and Displacement are initially treated as 
optimization constraints.

Reducing the use of roof structure steel is important for indoor sports halls to reduce 
embodied energy usage. The SUI is a performance measure useful for measuring 
roof structure steel use. It represents the mass of a steel roof structure divided by 
total floor area. It can help benchmark the steel use efficiency of buildings. The SUI 
is to be minimized (i.e., Min_SUI).

Fulfilling Ultimate Limit State (ULS) and Service Limit State (SLS) requirements is 
important for indoor sports halls to ensure the safety of the large-span structure. 
The measure Utility and Displacement can be used respectively to check whether ULS 
and SLS requirements are fulfilled or not. In this case, the maximum utility allowed in 
ULS check or Unity Check is 0.9 (i.e., Min_UC ≤ 0.9); and the maximum displacement 
allowed in SLS check or Displacement Check is 0.3m (i.e., Min_DC ≤ 0.3m). That 
is, a structural member is constrained to have a utility value less than or equal 
to 0.9 and a displacement value less than or equal to 0.3m. Moreover, it should be 
noted that a tolerance value has been introduced in the unity check in this case, in 
order to reduce the total number of unfeasible solutions and prevent missing many 
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potential designs. In some cases, once a structural member fails the unity check, 
the structural design is considered as an unfeasible solution. But, from a practical 
point of view, the occurrence of a small number of structural members which slightly 
go beyond the utility constraint is actually allowed, because the violation of the 
constraint can be easily solved afterwards by strengthening it locally. Thus, in this 
case, a tolerance value of 2% is applied in the unity check, meaning that 2% of the 
total structural members are allowed to slightly go beyond the utility constraint.

Finally, the software tool used for creating the simulation model is Grasshopper’s 
plug-in called Karamba 3D which adopts finite element analysis (FEA) simulation 
methods. This tool contains a local optimization module which can automatically 
select the optimum section profile from among all provided ones according 
to EN1993; and it contains a code checking module based on EN1993 for the 
unity check.

 5.3.3 Output of Phase-I

The main output of Phase-I is an initial MOO model which includes an initial set of 
performance objectives, constraints, and design variables. This model is to be used 
in the next phase.

 5.4 Phase-II adopting a linear re-formulation 
process

Phase-II (i.e., Optimization Problem Re-Formulation) of the Subtype-I method (i.e., 
non-dynamic method) adopts a linear process.

In Case Study I, the design context is to highlight reducing existing design 
possibilities; thus, the linear re-formulation process adopted is a one-time re-
formulation process that focuses on removing existing variables (i.e., refining an 
existing concept convergently). For this re-formulation, designers have to discover 
the answers to the following questions:
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 – Which performance measures are more meaningful for final objectives 
or constraints?

 – How many “steps” of the roof are more promising to lead to good quantitative and 
qualitative performances?

 – How, and to what extent, do the geometries of the grandstands, roof 
envelope, external shadings, and roof structure affect quantitative and 
qualitative performances?

 – How to achieve a proper MOO model that has the potential to lead to better 
Pareto solutions?

Normally, designers answer these questions highly relying on their personal past 
experiences. However, as performance objectives, constraints, and design variables 
increase, the complexity of these questions increases rapidly. In this circumstance, 
it is difficult for designers to obtain the right answers to these questions by purely 
relying on their past experiences.

Given the above fact, it is necessary to carry out quantitative data analysis from 
multiple angles in this phase, in order to extract useful information and knowledge, 
and to support the linear re-formulation process. As exemplified in FIG.3.4, three 
types of actions are conducted in this phase (Section 5.4.1) for achieving a final 
MOO model (Section 5.4.2).

 5.4.1 One-time re-formulation

 5.4.1.1 Data generation

Two groups of 500 data sets are generated for analysis. Each group is derived based 
on an automation process consisting of a MOO model, the Uniform Latin Hypercube 
sampling algorithm, and the sequential execution order (see FIG.5.8). A data set 
contains quantitative data (i.e., numeric design values and performance values) and 
qualitative data (i.e., building geometries).
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Design 
variables

Performance 
measures

FIG. 5.8 The automation process for generating the data in Case study I (revised from Yang et al., 2018)

The initial MOO model is used to generate the first group of data sets. However, the 
data sets obtained are not ideal in some senses. This indicates the need to adjust 
the strictness of the performance measures and the bounds of the design variables, 
namely update the initial MOO model. The updated model is then used to generate 
the second group of 500 data sets. The two groups of data sets are checked, as 
described below.

The performance values in the first group of data sets are checked, in order to 
know the proportion of feasible or unfeasible solutions and the performance 
value distribution. First, as statistics shows, unfeasible solutions account for 
a major portion (87.6%), which is mainly due to the violation of architectural 
constraints, namely Seat Number and Clear Height constraints (see TABLE 5.4). 
Thus, it is necessary to adjust the bounds of relevant variables, to increase the 
portion of feasible solutions. In this case, the bounds of the SeatRows, TopHeight, 
BottomHeight, and BVD1 to BVD5 are adjusted. Second, the statistics also shows 
that UDImod-60 values are mostly distributed in the high value range, which means the 
measure UDImod-60 can be readily satisfied (see FIG.5.9, left). Thus, it is reasonable 
to use a stricter measure to achieve a higher daylight availability level. In this case, 
the stricter measure used is UDImod-65, which increases the percentage of occupied 
hours for which the “useful” daylight illuminances are received.

TabLe 5.4 Summary of the two groups of data sets (Yang et al., 2018)

DoE data set Feasible
solutions

Unfeasible
solutions

Violation of constraints

Con_NOS Con_SC Con_UC Con_DC

Initial DoE 
data set

62 (12.4%) 438 (87.6%) 261 367 57 21

Second DoE 
data set

230 (46.0%) 270 (54.0%) 52 169 75 30
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The performance values in the second group of data sets are checked, in a similar 
way. As expected, unfeasible solutions are reduced significantly (see TABLE 5.4), 
and UDImod-65 values are mostly distributed in the low value range (see FIG.5.9, 
right). The former can help achieve more feasible solutions by satisfying the violated 
architectural constraints; the latter can help to leave sufficient room for achieving 
higher daylight availability levels. The second 500 data sets will be used for the 
consequent information and knowledge extraction.

FIG. 5.9 The distribution of UDI values in the two groups of data sets (Yang et al., 2018)

Note: The distribution of UDImod-60 values in the first group of data sets (left); the distribution of UDImod-65 values in the 
second group of data sets (right). The orange and gray columns respectively represent the percentages of unfeasible and 
feasible solutions.

 5.4.1.2 Information and knowledge extraction

Based on the data sets obtained, three categories of knowledge are extracted, 
namely knowledge about the performance measures, the high-level variable, and the 
low-level variables, as exemplified in FIG.3.4.

Knowledge about the performance measures

To acquire knowledge about which quantitative performance measures are more 
meaningful for final objectives or constraints, it is helpful to extract correlations 
between related measures. However, extracting such correlations accurately is 
challenging, especially when there are many measures to be considered, and/or, 
when the data sets used for the correlation extraction are changed.

To handle this challenge, a specific correlation analysis technique - Pearson 
Correlation (Glen, 2021) is used. The dimensions of the analyzed data sets consist 
of the measures EUI, SUI, UDImod-65, and URmod. As a result, correlation coefficients 
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between all the measures are generated and visualized in a correlation matrix chart 
(see FIG.5.10, top). The numerical values in the lower left of the chart represent 
the correlation coefficients; the images in the upper right of the chart represent the 
related 2D scatter plots; and the bar charts running diagonally between these areas 
represent the discrete probability density functions of all the measures. Based on the 
result, correlation information is extracted and interpreted, so as to acquire desired 
knowledge, as described below.

The extracted correlation information includes: (1) EUI does not correlate with the 
other three measures, as the absolute correlation coefficients are smaller than 0.1; 
(2) SUI has a weak correlation with UDImod-65 and URmod, as the absolute correlation 
coefficients are in between 0.1 and 0.3; (3) UDImod-65 has a medium correlation 
with URmod, as the absolute correlation coefficient is in between 0.3 and 0.5 (see 
FIG.5.10, bottom); and (4) UDImod-65 and URmod have the same desired changing 
directions – increasing their values as much as possible.

The extracted correlation information is interpreted in disciplinary contexts. 
Measures from different disciplines may be weakly or not correlated. In this case, 
the climate-related measures EUI, UDImod-65, and URmod are functions of variables 
which define the roof envelope; and the structure-related measure SUI is a function 
of variables which define the roof structure. Thus, these two types of measures are 
probably weakly or not correlated, given that they are functions of different variables. 
Measures from the same discipline may be notably correlated. In this case, a high 
UDImod-65 value indicates that too low and too high illuminance levels are mostly 
avoided in the court area; and avoiding the extreme illuminance levels can help to 
improve daylight uniformity and achieve a high URmod value. Thus, UDImod-65 may 
be positively correlated with URmod to a noticeable extent. Measures from the same 
discipline are not necessarily notably correlated. In this case, a high UDImod-65 value 
does not definitely indicate a high or low EUI value. This mainly because a EUI value 
can be determined by a balance between energy saved from using daylight and 
energy used for cooling. Specifically, when more daylight is available, lighting energy 
savings and cooling energy usage may increase at the same time. The lighting energy 
savings can be or cannot be offset by the cooling energy usage. Thus, UDImod-65 are 
not necessarily correlated with EUI to a noticeable extent.

Based on the information extraction and interpretation, the knowledge below is 
acquired. The quantitative measures UDImod-65, EUI, and SUI are considered to be 
more meaningful choices to form objectives (i.e., Max_UDImod-65, Min_EUI, Min_SUI); 
the quantitative measure URmod is considered to be a more meaningful choice to form 
a constraint (i.e., Cons_URmod). This is given that UDImod-65 and URmod are positively 
and notably correlated, and their desired changing directions are the same.
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FIG. 5.10 Correlation analysis results (Yang et al., 2018)

Note: Correlation matrix chart of four candidate objective variables (left); 2D scatter plot of Obj_UDImod-65 and Obj_URmod (right).

To acquire knowledge about which qualitative performance measures are more 
meaningful for final objectives or constraints, human subjectivity is required (i.e., 
subjectively determining meaningful qualitative measures). In this case, a qualitative 
measure Aesthetics is considered to be a more meaningful choice to form a 
constraint, among many possible measures (e.g., cultural, social related measures). 
It is defined as the aesthetic quality of roof envelopes specifically.

Overall, in this case, the quantitative measures UDImod-65, EUI, and SUI are 
considered to be more meaningful choices to form objectives, while the other 
measures are considered to be more meaningful choices to form constraints. Note 
that, screening objectives is a decision that needs both quantitative and qualitative 
related knowledge. With those knowledge, designers can prioritize quantitative and 
qualitative measures for determining the final screening of the objectives.
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Knowledge about the high-level variable

To acquire knowledge about which high-level variable value (i.e., “RoofSteps” value) 
is more promising to lead to good EUI, SUI and UDImod-65 performances, it is helpful 
to construct meaningful clusters of samples according to “RoofSteps” values and 
performance values. However, constructing such clusters manually is challenging, 
especially when there are many samples to be clustered, and/or, when there exists 
multiple measured characteristics for clustering.

To handle the challenge, a specific cluster analysis technique - Hierarchical 
Clustering (Jain et al., 1999) is used. The dimensions of the analyzed data sets 
consist of the high-level variable “RoofSteps” and the measures EUI, SUI and 
UDImod-65. In this analysis, samples having the same or similar “RoofSteps” values 
and EUI, SUI, and UDImod-65 values are expected to be grouped in a cluster. As 
a result, twenty clusters are constructed and visualized in a clustering parallel 
coordinate chart and a 3D scatter plot (see FIG.5.11, top).

The extracted clustering information includes: (1) EUI values can be rather 
high or low, for samples having varying roof steps, SUI values can be relatively 
lower, for samples having 3 and 4 roof steps, and UDImod-65 values roughly 
decrease along with the increase of roof step numbers (see FIG.5.11, middle); 
(2) samples in CLUSTER_0 and CLUSTER_1 having 3 roof steps, samples in 
CLUSTER_5 having 2 roof steps, and samples in CLUSTER_16 having 4 roof 
steps can reach the chosen objectives simultaneously (see FIG.5.11, bottom); 
and (3) among the above four clusters of samples, those in CLUSTER_0 and 
CLUSTER_1 having 3 roof steps account for the major portion, and those in 
CLUSTER_5 having 2 roof steps are quantitatively more promising (see FIG.5.11, 
bottom). For extracting this information, human subjectivity is required (i.e., 
subjectively determining desired relative importance of the chosen objectives). This 
relative importance is reflected by filtering arrows (see FIG.5.11, bottom). The closer 
a filtering arrow reaches the end of an objective (i.e., the low-value ends of EUI and 
SUI, the high-value end of UDImod-65), the more important the objective is.

The extracted clustering information is interpreted in disciplinary contexts. 
Regarding the Roofstep-EUI relation, the number of roof steps (i.e., the width 
between roof steps) is not the only factor affecting energy use; there can be other 
important factors such as the distribution of skylights. Thus, EUI values vary 
significantly regardless of the number of roof steps. Regarding the Roofstep-SUI 
relation, when the number of roof steps is too small or large, the structural elements 
can become too sparse or dense, which possibly makes the structure inefficient. 
Thus, SUI values are low when the number of roof steps is not too small or large. 
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FIG. 5.11 Hierarchical clustering results (Yang et al., 2018)

Note: All twenty clusters created via the cluster analysis (top); the filtered clusters with a similar number of roof steps (middle); 
the filtered clusters with desired performance trends (bottom).
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Regarding the Roofstep-UDImod-65 relation, when the number of roof steps is large, 
daylight can be more evenly spread over the indoor space, which possibly results in 
some more spots with insufficient illuminance. Thus, UDImod-65 values decrease as 
the increase of roof step numbers.

Based on the information extraction and interpretation, the knowledge below is 
acquired. The high-level variable values 2, 3, and 4 are considered more promising to 
lead to good EUI, SUI, and UDImod-65 performances. This is mainly given the fact that 
samples in CLUSTER_0, CLUSTER_1, CLUSTER_5, and CLUSTER_16 can reach the 
chosen EUI, SUI and UDImod-65 objectives simultaneously.

To acquire knowledge about which high-level variable value (i.e., “RoofSteps” value) 
is more promising to lead to acceptable Aesthetics performance, human subjectivity 
is required (i.e., subjectively evaluating the Aesthetics performance of clusters of 
samples). In this case, clusters of samples having 2, 3, and 4 roof steps are assumed 
aesthetically more promising, that is, the high-level variable values 2, 3, and 4 are 
considered more promising to lead to acceptable Aesthetics performance.

Overall, in this case, the high-level variable values 2, 3, and 4 are considered more 
promising, any of which can be chosen to determine the low-level variables in 
question. Note that, choosing a high-level variable value is a decision that needs 
both quantitative and qualitative related knowledge. If a high-level variable value 
promising to achieve good quantitative performances is different from that promising 
to achieve acceptable qualitative performances, the two types of performance 
measures need to be prioritized first, before determining the final choice of the high-
level variable value.

Knowledge about the low-level variables

To acquire knowledge about which low-level variables are more important to 
the variance of EUI, SUI, and UDImod-65 performances, it is helpful to extract the 
sensitivity of these variables on the performances. However, extracting such 
sensitivity accurately is challenging, especially when there are many variables 
involved, and/or, when both main and interaction effects (Rahman, 2019) of the 
variables are to be considered.

To handle the challenge, a specific sensitivity analysis technique - Smoothing Spline 
Analysis of Variance (Gu, 2002; Ricco et al., 2013) is used. The dimensions of the 
analyzed data sets consist of the low-level variables (excluding BVD4, BVD5, F4, F5, 
R4, R5, RUN4, RUN5, as “RoofSteps” value equals to 3) and the measures EUI, SUI, 
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and UDImod-65. In this analysis, the variables and measures are also called “factors” 
and “responses” respectively; a main-effect factor or an interaction-effect factor 
is also called a “term”. As a result, the relative importance (i.e., the percentage of 
contribution) of each term to the global variance of a response is extracted and 
visualized in an effect column chart (see FIG.5.12).

The extracted sensitivity information includes: (1) the contributions of the terms to 
EUI are very diverse, the most important two factors (i.e. OverhangY and TopHeight) 
are responsible for the major portions (i.e. 37.9% and 33.9% respectively) of the 
variance of EUI; (2) the contributions of the terms to SUI are less diverse, the most 
important factor (i.e. MiddleSpan) is responsible for a small portion (i.e.10.8%) of 
the variance of SUI, the remaining terms as a whole account for the major portion; 
(3) the contributions of the terms to UDImod-65 are also less diverse, the most 
important three factors (i.e. TopHeight, BottomHeight, and R1) are respectively 
responsible for a small portion (i.e., 14.2%, 11.2%, and 10.5%) of the variance 
of UDImod-65, the remaining terms as a whole account for a larger portion; and (4) 
interaction effects are non-negligible, especially for SUI and UDImod-65. For extracting 
this information, human subjectivity is required (i.e., subjectively determining desired 
percentages of the cumulative effect of unremoved terms). These percentages are 
reflected by red vertical lines (see FIG.5.12). In this case, 80% of the cumulative 
effect is used to identify unremoved terms; the factors involved in these unremoved 
terms are all considered as important variables, as shown in light green in TABLE 5.5.

The extracted sensitivity information is interpreted in disciplinary contexts. Since 
OverhangY defines the overhang depth for north-south-facing clearstories, it can 
significantly affect the amount of daylight coming into the interior space; and 
since TopHeight defines the height and hence volume of the interior space, it can 
significantly affect the amount of cooling loads required to maintain certain thermal 
conditions. Thus, these two factors can have large effects to the variance of EUI. 
Since MiddleSpan defines the locations of maximum vertical distances between 
upper and lower main beams, it can affect the load-bearing capacity of the roof 
structure. Thus, this factor can have a noticeable effect to the variance of SUI. Since 
TopHeight and BottomHeight define the vertical locations and sizes of clearstories, 
and R1 defines the horizontal locations of clearstories, they can affect the daylight 
availability levels on the court. Thus, these three factors can have a noticeable effect 
to the variance of UDImod-65.
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FIG. 5.12 Sensitivity analysis results (Yang et al., 2018)

Note: All terms that maintain a cumulative effect of 100% (top); the terms that maintain a cumulative effect of 80% (bottom).
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TabLe 5.5 Important design variables for each response and their main effects (Yang et al., 2018)

Seat
Rows

Bottom
Height

Top
Height

R1 R2 R3 F1 F2 F3 Over-
hang X

Over-
hang Y

Centre
Span

Middle
Span

Side
Span

BVD1 BVD2 BVD3 RUN1 RUN2 RUN3
Ob

j_E
UI

0.026 0.032 0.339 0.026 0.002 0.000 0.012 0.000 0.000 0.004 0.379 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000

Ob
j_M

ass

0.013 0.002 0.002 0.019 0.000 0.000 0.003 0.000 0.000 0.003 0.002 0.020 0.108 0.021 0.012 0.012 0.000 0.000 0.039 0.012

Ob
j_U

DIm
od

-65 0.009 0.112 0.142 0.105 0.000 0.005 0.000 0.000 0.017 0.000 0.000 0.000 0.000 0.001 0.004 0.006 0.001 0.000 0.000 0.003

Based on the information extraction and interpretation, the knowledge below is 
acquired. All the low-level variables are considered important to the variance of 
EUI, SUI, and UDImod-65 performances. This is mainly given the fact that any of 
these variables (i.e., factors) is involved at least in one unremoved term for one of 
the responses.

To acquire knowledge about which low-level variables are more important to the 
variance of Aesthetics performance, human subjectivity is required (i.e., subjectively 
determining the importance of the low-level variables on Aesthetics performance). 
In this case, all the low-level variables are assumed to be able to affect Aesthetics 
performance, that is, being important to the variance of Aesthetics performance.

Overall, in this case, all the low-level variables in question are considered important 
to the variance of the quantitative and qualitative performances. Note that, screening 
low-level variables is a decision that needs both quantitative and qualitative 
related knowledge. If low-level variables important to quantitative performances 
are different from those important to qualitative performances, the two kinds of 
performance measures need to be prioritized first, before determining the final 
screening of the low-level variables.

 5.4.1.3 Multi-objective optimization model re-formulation

The initial MOO model is re-formulated based on the acquired knowledge. The 
specific re-formulation actions include quantitative objective reduction, qualitative 
constraint addition, high-level variable reduction, and low-level variable reduction, as 
suggested by the acquired knowledge.
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For different purposes of study, different MOO models can be created. In this 
study, MOO model 0-5 are created by selecting different sets of performance 
objectives, constraints, and design variables (see TABLE 5.6 and TABLE 5.7), as 
described below.

TabLe 5.6 Re-formulated optimization problems and the execution (revised from Yang et al., 2018)

M
OO

 m
od

el
s

Optimization problem (re-)formulation Execution

N
um

be
r o

f 
ob

je
ct

iv
es

Number of (Type I) 
design variables

Number 
of (Type 
II & III) 
design 
variables

Initial 
generation

Actual 
evaluated 
designs

Total time Time per 
design

Traditional 
method

MOO model 
0

4 1 (RoofSteps = 
2,3,4,5)

16-28 ULH 462 37h:43m 4.90m

Proposed 
method

MOO model 
1

3 0 (RoofSteps = 3) 20 High-
performing 
cluster a

463 42h:02m 5.45m

Factor 1 MOO model 
2

2 0 (RoofSteps = 3) 20 High-
performing 
cluster a

453 40h:51m 5.41m

Factor 2 MOO model 
3

3 0 (RoofSteps = 2) 16 High-
performing 
cluster b

455 32h:01m 4.22m

MOO model 
4

3 0 (RoofSteps = 4) 24 High-
performing 
cluster c

449 51h:41m 6.91m

Factor 3 MOO model 
5

3 0 (RoofSteps = 3) 18 High-
performing 
cluster d

463 42h:52m 5.56m

Factor 4 MOO model 
1

3 0 (RoofSteps = 3) 20 ULH 465 44h:09m 5.70m

High-performing cluster a: CLUSTER_0 and CLUSTER_1 having “RoofSteps” value 3.

High-performing cluster b: CLUSTER_5 having “RoofSteps” value 2.

High-performing cluster c: CLUSTER_16 having “RoofSteps” value 4.

High-performing cluster d: CLUSTER_0 and CLUSTER_1 having “RoofSteps” value 3 (R3 and RUN3 are treated as constants in 
these clusters).
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TabLe 5.7 Lists of re-formulated objectives and design variables (Yang et al., 2018)

Traditional 
method

Proposed 
method

Factor1 Factor2 Factor2 Factor3 Factor4

MOO models MOO model 0 MOO model 1 MOO model 2 MOO model 3 MOO model 4 MOO model 5 MOO model 1

Objectives Obj_EUI Obj_EUI Obj_EUI Obj_EUI Obj_EUI Obj_EUI Obj_EUI

Obj_Mass Obj_Mass Obj_Mass Obj_Mass Obj_Mass Obj_Mass Obj_Mass

Obj_UDImod-65 Obj_UDImod-65 - Obj_UDImod-65 Obj_UDImod-65 Obj_UDImod-65 Obj_UDImod-65

Obj_URmod - - - - - -

Design 
variables 
(Type I)

RoofSteps - - - - - -

Design 
variables  
(Type II & III)

SeatRows SeatRows SeatRows SeatRows SeatRows SeatRows SeatRows

BottomHeight BottomHeight BottomHeight BottomHeight BottomHeight BottomHeight BottomHeight

TopHeight TopHeight TopHeight TopHeight TopHeight TopHeight TopHeight

R1 R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2 R2

R3 R3 R3 - R3 - R3

R4 - - - R4 - -

R5 - - - - - -

F1 F1 F1 F1 F1 F1 F1

F2 F2 F2 F2 F2 F2 F2

F3 F3 F3 - F3 F3 F3

F4 - - - F4 - -

F5 - - - - - -

OverhangX OverhangX OverhangX OverhangX OverhangX OverhangX OverhangX

OverhangY OverhangY OverhangY OverhangY OverhangY OverhangY OverhangY

CentreSpan CentreSpan CentreSpan CentreSpan CentreSpan CentreSpan CentreSpan

MiddleSpan MiddleSpan MiddleSpan MiddleSpan MiddleSpan MiddleSpan MiddleSpan

SideSpan SideSpan SideSpan SideSpan SideSpan SideSpan SideSpan

BVD1 BVD1 BVD1 BVD1 BVD1 BVD1 BVD1

BVD2 BVD2 BVD2 BVD2 BVD2 BVD2 BVD2

BVD3 BVD3 BVD3 - BVD3 BVD3 BVD3

BVD4 - - - BVD4 - -

BVD5 - - - - - -

RUN1 RUN1 RUN1 RUN1 RUN1 RUN1 RUN1

RUN2 RUN2 RUN2 RUN2 RUN2 RUN2 RUN2

RUN3 RUN3 RUN3 - RUN3 - RUN3

RUN4 - - - RUN4 - -

RUN5 - - - - - -
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The first purpose is to study whether the Subtype-I method (i.e., non-dynamic 
method) is better than the traditional method (defined in FIG.3.1). For this, MOO 
model 0 is created based on the traditional method. This means that all the initial 
performance objectives, constraints, and design variables are kept unchanged 
to create the model. Moreover, MOO model 1 is created based on the acquired 
knowledge. First, the desired quantitative objective number is set to 3, as the 
quantitative objective Max_URmod is transformed into a quantitative constraint 
Cons_URmod whose lower bound is 0.58 (i.e., the third quartile of the URmod values); 
second, the desired “RoofSteps” value is set to 3, thus the high-level variable 
“RoofSteps” is transformed into a constant value, and irrelevant low-level variables 
BVD4, BVD5, F4, F5, R4, R5, RUN4, and RUN5 are removed; third, the desired 
percentages of cumulative effects of important terms are set to 80%, thus none of 
the remaining low-level variables are transformed into a constant value; and finally, a 
qualitative constraint Cons_Aesthetics is added.

The second purpose is to study how the choice of the objectives may affect the 
optimization results. For this, MOO model 2 is created. First, the desired quantitative 
objective number is set to 2, as the quantitative objective Max_UDImod-65 is 
transformed into a quantitative constraint Cons_UDImod-65 whose lower bound 
is 32.55% (i.e., the third quartile of the UDImod-65 values); then, the other aspects are 
the same as those for MOO model 1.

The third purpose is to study how the choice of the high-level variable values 
(i.e., “RoofSteps” values) may affect the optimization results. For this, MOO 
model 3 and 4 are created. First, the desired “RoofSteps” values are set to 2 and 4, 
thus the high-level variable “RoofSteps” in each of the models is transformed into 
a constant value, and irrelevant low-level variables are removed; then, the other 
aspects are the same as those for MOO model 1.

The fourth purpose is to study how the choice of the low-level variables may 
affect the optimization results. For this, MOO model 5 is created. First, the desired 
percentages of cumulative effects of important terms (for SUI and UDImod-65) are set 
to 60%, thus the low-level variables R3 and RUN3 are transformed into constant 
values (i.e., the medians of the R3 and RUN3 values); the other aspects are the same 
as those for MOO model 1.

The fifth purpose is to study how the use of a purely random initial population may 
affect the optimization results. For this, MOO model 1 is used.
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 5.4.2 Output of Phase-II

The main output of Phase-II includes a final MOO model which includes a final set 
of performance objectives, constraints, and design variables (i.e., MOO model 1). 
Moreover, it can also include other MOO models for comparison purposes. In this 
case, all of them are to be used in the next phase.

 5.5 Phase-III utilizing a directed initial 
population

Phase-III (i.e., Optimization Problem Solving) of the Subtype-I method (i.e., non-
dynamic method) utilizes a directed initial population.

In Case Study I, the directed initial population consists of samples selected from 
high-performing clusters. Such clusters can be found from the parallel coordinate 
chart shown in FIG.5.11. In order to study relevant hypotheses, different initial 
population (i.e., directed and purely random initial populations) are used in 
combination with different MOO models. They are used to set up multiple MOO runs 
which are then executed (Section 5.5.1). MOO results are compared (Section 5.5.2) 
in order to extract knowledge about the hypotheses as the main output of this phase 
(Section 5.5.3).

 5.5.1 Multi-objective optimization setup and execution

 5.5.1.1 Setup for studying hypothesis one

It is hypothesized that adopting the Subtype-I method (i.e., non-dynamic method) 
can help achieve a quantitatively and qualitatively better Pareto front, compared with 
adopting the traditional method (defined in FIG.3.1). For studying this hypothesis, 
two groups of MOO runs are set up (i.e., MOO run A and B), as described below.
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For studying the effects of adopting the traditional method, MOO run A is set up. It 
is based on: MOO model 0 (where the chosen “RoofSteps” values are 2, 3, 4, and 5), 
and a purely random initial population (selected from the entire design space).

For studying the effects of adopting the Subtype-I method (i.e., non-dynamic 
method), MOO run B is set up. It is based on: MOO model 1 (where the chosen 
“RoofSteps” value is 3), and a directed initial population (selected from 
CLUSTER_0 and CLUSTER_1 having “RoofSteps” value 3).

 5.5.1.2 Setup for studying hypothesis two

It is hypothesized that factors including the choice of objectives, high-level variable 
values, low-level variables, and initial populations may affect the behaviors of 
Subtype-I method (i.e., non-dynamic method). More specifically, factors of over-
screening objectives, choosing different high-level variable values (i.e., “RoofSteps” 
values), over-screening low-level variables, and utilizing a purely random initial 
population may affect final MOO results. For studying this hypothesis, five more 
groups of MOO runs are set up (i.e., MOO run C to G), as described below.

For studying the impacts of over-screening objectives, MOO run C is set up. 
It is based on: MOO model 2 (where the chosen “RoofSteps” value is 3, and 
more objectives are removed), and a directed initial population (selected from 
CLUSTER_0 and CLUSTER_1 having “RoofSteps” value 3).

For studying the impacts of choosing different high-level variable values (i.e., 
“RoofSteps” values), MOO run D and E are set up. MOO run D is based on: MOO 
model 3 (where the chosen “RoofSteps” value is 2), and a directed initial population 
(selected from CLUSTER_5 having “RoofSteps” value 2). MOO run E is based on: MOO 
model 4 (where the chosen “RoofSteps” value is 4), and a directed initial population 
(selected from CLUSTER_16 having “RoofSteps” value 4).

For studying the impacts of over-screening low-level variables, MOO run F is set up. 
It is based on: MOO model 5 (where the chosen “RoofSteps” value is 3, and more 
low-level variables are removed), and a directed initial population (selected from 
CLUSTER_0 and CLUSTER_1 having “RoofSteps” value 3).

For studying the impacts of using a purely random initial population, MOO run G is 
set up. It is based on: MOO model 1, and a purely random initial population (selected 
from the entire design space).
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 5.5.1.3 Optimization execution

There is a total of seven optimizations to execute. For all these optimizations, the 
same MOO algorithm and settings are used: Non-dominant Sorting Genetic Algorithm 
II (NSGA-II), a population size of 25, and 20 generations etc. All these optimizations 
are executed on a 6-Core (12-Thread) computer. The total time for executing each 
optimization is around 2 days; and the average time for evaluating each solution is 
around 5 minutes.

 5.5.2 Multi-objective optimization result comparison

The MOO results include the (quantitative and qualitative) data of Pareto solutions. 
The data is organized in ways that facilitate the comparison of Pareto solutions 
(see FIG.5.13 - FIG.5.19). For instance, the performance values of Pareto solutions 
are plotted in the same 3D space and summarized using box-whisker plots and 
tables; the geometries of Pareto solutions are presented next to each other; and the 
numbers of Pareto solutions, unfeasible solutions, and broken solutions that violates 
certain constraints are presented in Appendix V. Moreover, the optimization result 
comparison is summarized in TABLE 5.8.

Some issues are important for comparing the MOO results. First, it is important 
to know the concept of a hypervolume indicator (Zitzler and Thiele, 1998; Zitzler 
et al., 2007). This indicator can be used to compare different Pareto fronts. A 
higher hypervolume value represents a better Pareto front in terms of proximity 
and diversity. To allow meaningful comparisons, the same reference point is used 
to calculate hypervolume values. Moreover, it is also important to make clear what 
an ideal Pareto front is in the context that highlights reducing existing design 
possibilities. As explained in Section 3.2.3.3, an ideal Pareto front in this context 
should have good proximity and diversity, good pertinence, good geometric 
preference compliance, and good geometric variation appropriateness. Here, good 
pertinence means that Pareto solutions are within a small region of interest; good 
geometric variation appropriateness means that Pareto solutions have a low degree 
of geometric variations.
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FIG. 5.13 Optimization results derived from MOO run A in Case Study I (Yang et al., 2018)
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FIG. 5.14 Optimization results derived from MOO run B in Case Study I (Yang et al., 2018)

FIG. 5.15 Optimization results derived from MOO run C in Case Study I (Yang et al., 2018)
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FIG. 5.16 Optimization results derived from MOO run D in Case Study I (Yang et al., 2018)

FIG. 5.17 Optimization results derived from MOO run E in Case Study I (Yang et al., 2018)
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FIG. 5.18 Optimization results derived from MOO run F in Case Study I (Yang et al., 2018)

FIG. 5.19 Optimization results derived from MOO run G in Case Study I (Yang et al., 2018)

TOC



 188 Design as  Exploration

TabLe 5.8 Summary of optimization result comparison in Case Study I

Purposes of the verification Optimization result comparison

Qu
an

tit
y

Pe
rt

in
en

ce

Pr
ox

im
ity

 a
nd

 
di

ve
rs

ity

Ge
om

et
ric
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re

fe
re

nc
e 
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m
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e

G
eo

m
et

ric
 v

ar
ia

tio
n 

ap
pr

op
ria

te
ne

ss

Verify the benefits of adopting the 
Subtype-I method

Pareto solutions from MOO run B  
(compared with those from MOO run A)

+ + + x +

Verify the impacts of over-
screening objectives

Pareto solutions from MOO run C  
(compared with those from MOO run B)

- + - x x

Verify the impacts of choosing 
different high-level variable values 
(i.e., “RoofSteps” values)

Pareto solutions from MOO run D  
(compared with those from MOO run B)

- - + x -

Pareto solutions from MOO run E  
(compared with those from MOO run B)

- - - x -

Verify the impacts of over-
screening low-level variables

Pareto solutions from MOO run F  
(compared with those from MOO run B)

- - - x -

Verify the impacts of utilizing a 
purely random initial population

Pareto solutions from MOO run G  
(compared with those from MOO run B)

- - - x -

Note: “+” represents better results or positive impacts; “-” represents worse results or negative impacts; “x” represents similar 
results or no significant impacts.

 5.5.2.1 Result comparison for verifying hypothesis one

To verify the benefits of adopting the Subtype-I method (i.e., non-dynamic method), 
the Pareto solutions from MOO run B (see FIG.5.14) are compared with the Pareto 
solutions from MOO run A (see FIG.5.13).

The Pareto solutions from MOO run B (1) have a quantity more similar to the size 
of the initial population; (2) are within a smaller region of interest; (3) lead to a 
higher hypervolume value 67999.83; (4) are similarly compliant with the geometric 
preference; and (5) have a lower degree of geometric variations. These facts 
confirm that adopting the Subtype-I method (i.e., non-dynamic method) can help 
achieve a better Pareto front in terms of the quantity, pertinence, proximity and 
diversity, and geometric variation appropriateness, compared with adopting the 
traditional method.

It is also worthwhile to compare an individual solution from MOO run B with that from 
the real project. Specifically, a random Pareto solution derived from executing MOO 
run B (circled in FIG.5.14) and a benchmark solution most like the real project (listed 
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in the last column of TABLE 5.1) are chosen for the comparison. The data of these 
two solutions are shown in FIG.5.20. It is observed that the EUI, Mass, UDImod-65, 
and URmod performances of the former solution are better than those of the latter 
solution, especially the UDImod-65 performance. This implies the need of adding 
additional skylights for the latter solution to increase daylight availability, as shown 
in the real project. It is also observed that the geometry of the former solution is 
significantly different from that of the latter solution. This indicates the possibility of 
obtaining more creative designs by providing more freedom to design exploration.

FIG. 5.20 Comparison of an optimal solution and a real project solution (Yang et al., 2018)

Note: A random Pareto solution derived from executing MOO run B (left); a benchmark solution most like the real project (right).

 5.5.2.2 Result comparison for verifying hypothesis two

To verify the impacts of over-screening objectives, the Pareto solutions from MOO 
run C (see FIG.5.15) are compared with the Pareto solutions from MOO run B (see 
FIG.5.14). The Pareto solutions from MOO run C (1) have a quantity less similar to 
the size of the initial population; (2) are within a smaller region of interest; (3) lead to 
a lower hypervolume value 51050.11; (4) are similarly compliant with the geometric 
preference; and (5) have a similar degree of geometric variations. These facts confirm 
that over-screening objectives can have negative impacts on the quantity, proximity 
and diversity of the Pareto front, but have positive impacts on the pertinence.

To verify the impacts of choosing different high-level variable values (i.e., 
“RoofSteps” values), the Pareto solutions from MOO run D (see FIG.5.16) and the 
Pareto solutions from MOO run E (see FIG.5.17) are respectively compared with the 
Pareto solutions from MOO run B (see FIG.5.14).
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First, the Pareto solutions from MOO run D (1) have a quantity less similar to the 
size of the initial population; (2) are within a larger region of interest; (3) lead 
to a higher hypervolume value 71355.90; (4) are similarly compliant with the 
geometric preference; and (5) have a higher degree of geometric variations. These 
facts confirm that choosing “RoofSteps” value 2 can have negative impacts on the 
quantity, pertinence, and geometric variation appropriateness of the Pareto front, 
but have positive impacts on the proximity and diversity.

Second, the Pareto solutions from MOO run E (1) have a quantity less similar to the 
size of the initial population; (2) are within a larger region of interest; (3) lead to a 
lower hypervolume value 36706.78; (4) are similarly compliant with the geometric 
preference; and (5) have a higher degree of geometric variations. These facts confirm 
that choosing “RoofSteps” value 4 can have negative impacts on the quantity, 
pertinence, proximity and diversity, and geometric variation appropriateness of the 
Pareto front.

To verify the impacts of over-screening low-level variables, the Pareto solutions 
from MOO run F (see FIG.5.18) are compared with the Pareto solutions from MOO 
run B (see FIG.5.14). The Pareto solutions from MOO run F (1) have a quantity less 
similar to the size of the initial population; (2) are within a larger region of interest; 
(3) lead to a lower hypervolume value 34768.40; (4) are similarly compliant with 
the geometric preference; and (5) have a higher degree of geometric variations. 
These facts confirm that over-screening low-level variables can have negative 
impacts on the quantity, pertinence, proximity and diversity, and geometric variation 
appropriateness of the Pareto front.

To verify the impacts of utilizing a purely random initial population, the Pareto 
solutions from MOO run G (see FIG.5.19) are compared with the Pareto solutions 
from MOO run B (see FIG.5.14). The Pareto solutions from MOO run G (1) have 
a quantity less similar to the size of the initial population; (2) are within a larger 
region of interest; (3) lead to a lower hypervolume value 39746.10; (4) are similarly 
compliant with the geometric preference; and (5) have a higher degree of geometric 
variations. These facts confirm that utilizing a purely random initial population can 
have negative impacts on the quantity, pertinence, proximity and diversity, and 
geometric variation appropriateness of the Pareto front.

TOC



 191 Case Study I

 5.5.3 Output of Phase-III

The main output of Phase-III includes not only final Pareto solutions, but also 
various knowledge derived by comparing these solutions. In this case, the knowledge 
obtained in this phase is about the benefits of adopting the Subtype-I method (i.e., 
non-dynamic method) and the factors affecting the behaviors of the method.

 5.6 Discussion

In this case study, the benefits of adopting the Subtype-I method (i.e., non-dynamic 
method) are derived from the incorporation of the linear knowledge-supported 
re-formulation process (Section 5.4). During the knowledge extraction process, 
convergent knowledge is obtained (i.e., the knowledge for helping a design process 
to converge on an acceptable design solution). With the help of this knowledge, 
unimportant design variables are removed to refine a concept convergently, thus 
facilitating the achievement of a more reliable optimization model and more reliable 
optimal solutions.

Human designers are influential during the linear re-formulation process. Their 
influence actually has two sides. On one side, they have advantages to support 
qualitative thinking; while on the other side, they may cause negative impacts on 
final optimal results when using the Subtype-I method (i.e., non-dynamic method) in 
different ways. For instance, when designers decide to choose a high-level variable 
value (i.e., “RoofSteps” value) within those that are considered quantitatively 
promising, both positive and negative impacts on the final Pareto front can occur; 
when designers decide to reduce the number of low-level variables extensively, 
negative impacts on the final Pareto front can occur; when designers decide to 
utilize a purely random initial population (rather than a directed initial population), 
the starting point for optimization is relatively low, which can also lead to negative 
impacts on the final Pareto front.
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 5.7 Conclusion

This chapter concludes by summarizing the main research results (Section 5.6.1); 
identifying possible extensions of the Subtype-I method (i.e., non-dynamic method) 
(Section 5.6.2); and providing concluding remarks (Section 5.6.3).

 5.7.1 Main research results

The main research results of this chapter include the following:

 – The overall process of the Subtype-I method (i.e., non-dynamic method) has 
been demonstrated in Case Study I. This subtype method includes a one-time 
Optimization Problem Re-Formulation (Re-OPF) process that focuses on removing 
existing variables (i.e., refining an existing concept convergently).

 – The benefits of adopting the Subtype-I method (i.e., non-dynamic method) have 
been verified. As confirmed by the optimization result comparison, adopting this 
subtype method can help achieve a better Pareto front in terms of the quantity, 
pertinence, proximity and diversity, and geometric variation appropriateness, 
compared with adopting the traditional method.

 – The factors affecting the behaviors of the Subtype-I method (i.e., non-dynamic 
method) have been verified. As confirmed by the optimization result comparison, 
factors of over-screening objectives, choosing different high-level variable values 
(i.e., “RoofSteps” values), over-screening low-level variables, and utilizing a purely 
random initial population can have varying impacts on the optimization results, 
including positive and negative impacts, as summarized in TABLE 5.8. Most of the 
impacts are negative and need to be avoided; but it is also worth noting the positive 
impacts, namely the impact of over-screening objectives on the pertinence of the 
Pareto front, and the impact of choosing different high-level variable values (i.e., 
“RoofSteps” values) on the proximity and diversity of the Pareto front.
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 5.7.2 Possible extensions

The Subtype-I method (i.e., non-dynamic method) can be further extended at least in 
the following two ways:

 – First, this subtype method can be extended by including more initial concepts in 
the Optimization Problem Initial-Formulation (Initial-OPF) phase. In Case Study I, 
the method has only included one initial concept defined by using a hierarchical 
variable structure. This can fit the context that highlights reducing existing 
design possibilities. However, in the context that highlights sparking new design 
possibilities, it is meaningful to include multiple initial concepts. These concepts can 
be also defined by using a hierarchical variable structure. More specifically, a high-
level variable “Concept” can be used to label different concepts, namely, different 
sets of low-level variables used to define the geometries of different concepts.

 – Second, this subtype method can be extended by allowing the addition of new 
variables in the Optimization Problem Re-Formulation (Re-OPF) phase. In Case 
Study I, the method has simply incorporated a one-time re-formulation process 
that focuses on removing existing variables. This can fit the context that highlights 
reducing existing design possibilities. However, in the context that highlights 
sparking new design possibilities, it is meaningful to incorporate a multiple-time 
re-formulation process that focuses on adding new variables. The addition of new 
variables reflects the addition of new concepts or ideas.

 5.7.3 Concluding remarks

In conclusion, the Subtype-I method (i.e., non-dynamic method) is applicable in the 
conceptual design of a sports competition hall with the aid of the new Gh-mF node. It 
is particularly useful for the relatively late sub-phase of the conceptual design where 
the main purpose is to reduce existing design possibilities. Thanks to the one-time 
Optimization Problem Re-Formulation (Re-OPF) process, this subtype method can 
help achieve a better Pareto front in terms of the quantity, pertinence, proximity, 
and diversity, and geometric variation appropriateness, compared with adopting 
the traditional method (defined in FIG.3.1). These benefits can be affected by 
factors like over-screening objectives, choosing different high-level variable values 
(i.e., “RoofSteps” values), over-screening low-level variables, and utilizing a purely 
random initial population.
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6 Case Study II
This chapter presents Case Study II. In this case study, the Subtype-II method (i.e., 
dynamic method) is applied to the conceptual design of the skylight geometry of a 
sports training hall with the aid of the new Gh-mF node. This case study was selected 
to demonstrate and verify this subtype method primarily because it focused on the 
relatively early sub-phase of the conceptual design where divergent thinking is often 
highlighted or the number of parameters is usually low.

The chapter is structured as follows. First, it introduces the purpose of Case Study 
II (Section 6.1). Then, it provides the background of the project involved in this case 
study (Section 6.2). Next, it presents the results derived from each phase of the 
dynamic method (Section 6.3, 6.4, 6.5). Finally, it concludes by summarizing the 
main research results, identifying possible applications of the dynamic method, and 
providing concluding remarks (Section 6.6).

This case study was supported by ESTECO SpA. Ir. Danilo Di Stefano, the product 
manager, who provided great support during the use of modeFRONTIER, especially 
the use of the Self-Organizing Map. Sections 6.2-6.5 involve contents published in 
Journal Article 2 (Yang et al., 2020) and Conference Paper 3 (Yang et al., 2017).

 6.1 Introduction

The purposes of Case Study II are multifold. First of all, this case study demonstrates 
the use of the Subtype-II method (i.e., dynamic method). Second, it verifies the 
benefits of adopting the method and the factors affecting the behaviors of the 
method. Third, it provides valuable feedback for possible applications of the method.

This case study assumes that the design context is to highlight sparking new design 
possibilities, such as many circumstances in the relatively early sub-phase of the 
conceptual design. Thus, the Subtype-II method (i.e., dynamic method) is adopted. 
This subtype method contains three phases; and the re-formulation phase is cyclical, 
as illustrated in FIG.6.1.
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Phase-I: 
Optimization 

Problem 
Initial-

Formulation

Data 
Generation

Information & 
Knowledge
Extraction

MOO Model 
Re-formulation

Satisfied 
Model?

Phase-III: 
Optimization 

Problem 
Solving

Yes

No

Phase-II: Optimization Problem Re-Formulation
(Subtype-II: Dynamic, Interactive Re-formulation method)

FIG. 6.1 The scheme of applying the Subtype-II method

Note: The shaded region corresponds to FIG.3.5.

 6.2 Project description

© Hector Santos-Díez © Hector Santos-Díez

© Paul Ott

© Ralf Heidenreich © Ralf Heidenreich sawtooth skylights 

monitor skylights 

near-horizontal skylights 

FIG. 6.2 A cuboid shape gymnasium and related examples (revised from Yang et al., 2017)

Note: A gymnasium with near-horizontal skylights (top); with monitor skylights (middle); with sawtooth skylights (bottom). 
Image Source: https://www.archdaily.com/.

This case study is based on a hypothetical project - a cuboid shape gymnasium 
(see FIG.6.2). The project is a simplified example of indoor sports halls that utilize 
top daylighting; and it is designed by the author for investigating different types of 
rooftop daylighting systems for indoor sports halls.
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The site of the project is located in Guangzhou, China. According to Chinese building 
codes – Code for thermal design of civil building (GB 50176-2016) and Standard for 
daylighting design of buildings (GB 50033-2013), the project is in the Hot Summer 
and Warm Winter climate zone and the IV daylighting climate zone.

The project contains a training hall without grandstands. The size of the court 
is 40m × 70m, which meets the requirements of many dry sports activities (e.g., 
basketball, badminton, gymnastics). This case study manipulates the geometries of 
the roofs, skylights, and internal shadings of the hall, in order to meet architectural, 
daylighting, energy, and cost performances.

 6.3 Phase-I involving multiple initial 
concepts

Phase-I (i.e., Optimization Problem Initial-Formulation) of the Subtype-II method 
(i.e., dynamic method) involves multiple initial concepts.

In Case Study II, the initial concepts are three typical top daylighting concepts 
(Section 6.3.1). Based on these concepts, a geometric parametric model and 
multi-disciplinary simulation or calculation models are created and integrated 
(Section 6.3.2), thus formulating an initial MOO model as the main output of this 
phase (Section 6.3.3).

 6.3.1 Initial concept generation

The initial concepts are three typical top daylighting concepts proposed at the 
outset of the conceptual design (see FIG.6.3). These concepts are near-horizontal 
skylights (i.e., Concept 1_0), monitor skylights (i.e., Concept 2_0), and sawtooth 
skylights (i.e., Concept 3_0), which utilize different control strategies to manage the 
quantity and quality of constantly changing daylight (CIBSE, 1999; Beltran, 2005; 
Harntaweegonsa and Beltran, 2007; Lechner, 2014; Al-Obaidi and Rahman, 2016; 
Mavridou and Doulos, 2019). They are chosen for discussion, because of their ability 
to bring natural lights deep into buildings.
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?

…… 40m 

70m 

15m 

Near-horizontal 
Skylights

Monitor 
Skylights

Sawtooth 
Skylights

FIG. 6.3 The initial concept in Case Study II (revised from Yang et al., 2020)

Note: Three typical top daylighting concepts (left), possible geometric variations generated based on these concepts (right).

 6.3.2 Multi-objective optimization model initial formulation

 6.3.2.1 Geometric parametrization

A geometric parametric model is created, based on the three initial top daylighting 
concepts illustrated in FIG.6.4 (1-3). Each of the concepts implies a vast number of 
possible building geometries. The complexity level of the geometries is not very high, as 
the focus of this case is not on highlighting the complexity of the geometries, but rather 
on showing how to continually enrich concepts in an informed manner. The geometries 
are initially parameterized by the design variables shown in TABLE 6.1 (1-3). Given that 
all lighting bands in a concept are the same, only one of them is parametrically defined. 
The design variables are organized in a two-level hierarchical structure, to facilitate the 
geometric parameterization of the three initial concepts. More details are provided below.
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(4) Concept 1_1 (5) Concept 2_1 (6) Concept 3_1
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The initial OPF

The 1st Re-OPF iteration

The 2nd Re-OPF iteration

FIG. 6.4 The initial and consequent parametric models in Case Study II (revised from Yang et al., 2020)

Note: The high-level variable is “Concept” which defines different concepts. The initial parametric model that defines 
Concept 1_0, Concept 2_0, Concept 3_0 in the initial formulation phase (1-3); the revised parametric model that defines 
Concept 1_1, Concept 2_1, Concept 3_1 in the first re-formulation iteration (4-6); the revised parametric model that defines 
Concept 1_2, Concept 2_2, Concept 3_2 in the second re-formulation iteration (7-9).
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TabLe 6.1 The initial and consequent design variables in Case Study II (revised from Yang et al., 2020)

Design Variables Range Step Design Variables Range Step Design Variables Range Step

Concept 1-3 1 Concept 1-3 1 Concept 1-3 1

LightingBandNumber 2-10 1 LightingBandNumber 2-10 1 LightingBandNumber 2-10 1

WindowLength 30-38m 0.1m WindowLength 30-38m 0.1m WindowLength 30-38m 0.1m

WindowWidth 1-3m 0.1m WindowWidthNS 1-3m 0.1m WindowWidth 1-3m 0.1m

OpeningWidth 1-3m 0.1m OpeningWidth 1-3m 0.1m

(1) Concept 1_0 (2) Concept 2_0 (3) Concept 3_0

Concept 4-6 1 Concept 4-6 1 Concept 4-6 1

LightingBandNumber 2-10 1 LightingBandNumber 2-10 1 LightingBandNumber 2-10 1

WindowLength 30-38m 0.1m WindowLength 30-38m 0.1m WindowLength 30-38m 0.1m

WindowWidth 2-4m 0.1m WindowWidthNS 2-4m 0.1m WindowWidth 2-4m 0.1m

ExtrusionHeight 1-3m 0.1m OpeningWidth 1-3m 0.1m OpeningWidth 1-3m 0.1m

ExtraOpeningWidth 1-3m 0.1m BuildingOrientation 165-195 0.5

(4) Concept 1_1 (5) Concept 2_1 (6) Concept 3_1

Concept 7-9 1 Concept 7-9 1 Concept 7-9 1

LightingBandNumber 2-10 1 LightingBandNumber 2-10 1 LightingBandNumber 2-10 1

WindowLength 30-38m 0.1m WindowLength 30-38m 0.1m WindowLength 30-38m 0.1m

WindowWidth 2-4m 0.1m OpeningWidth 2-4m 0.1m WindowWidth 2-4m 0.1m

ExtrusionHeight 1-3m 0.1m ExtrusionHeight 1-3m 0.1m OpeningWidth 2-4m 0.1m

ExtraOpeningWidth 1-3m 0.1m ExtraOpeningWidth 1-3m 0.1m BuildingOrientation 165-195 0.5

ShadingAngleA 15-75 0.5 ShadingAngleB 60-120 0.5

(7) Concept 1_2 (8) Concept 2_2 (9) Concept 3_2

Note: The variables in dark green and light green cells respectively represent the high-level variable and the low-level variables. The bolded black texts in the 
light green cells represent the newly added and revised variables during the first re-formulation interation, while the bolded green texts in the light green cells 
represent the newly added and revised variables during the second re-formulation iterations.

Geometric parameterization of the near-horizontal skylights

The geometric parameterization of the near-horizontal skylights specifically refers to 
the creation of parametric schemata which define the geometries of near-horizontal 
rooftop windows (i.e., Concept 1_0).

For defining the near-horizontal skylights, the variables LightingBandNumber, 
WindowLength, and WindowWidth are used, as illustrated in FIG.6.4 (1). The first 
variable represents the number of the lighting bands in the concept. The last two 
variables respectively represent the length and width of a window in the concept.
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Geometric parameterization of the monitor skylights

The geometric parameterization of the monitor skylights specifically refers to the 
creation of parametric schemata which define the geometries of vertical two-sided 
rooftop windows (i.e., Concept 2_0).

For defining the monitor skylights, the variables LightingBandNumber, 
WindowLength, WindowWidthNS, and OpeningWidth are used, as illustrated in 
FIG.6.4 (2). The first two variables are the same as those used for defining the near-
horizontal skylights. The third variable represents the sum of the widths of the north- 
and south-facing windows in a single lighting band. The fourth variable represents 
the width of the roof opening in a single lighting band.

Geometric parameterization of the sawtooth skylights

The geometric parameterization of the sawtooth skylights specifically refers to the 
creation of parametric schemata which define the geometries of vertical one-sided 
rooftop windows (i.e., Concept 3_0).

For defining the sawtooth skylights, the variables LightingBandNumber, 
WindowLength, WindowWidth, and OpeningWidth are used, as illustrated in 
FIG.6.4 (3). The first three variables are the same as those used for defining the 
near-horizontal skylights. The last variable is the same as that used for defining the 
monitor skylights.

The bounds and intervals of the variables are tuned based on some daylighting rules 
of thumb, to avoid unfeasible design solutions, while maintaining rich variability of 
the concepts.

A two-level hierarchical variable structure is used to facilitate the exploration of 
multiple concepts simultaneously. The high-level variable is the variable “Concept” 
marked in dark green in TABLE 6.1 (1-3) and is used to label different concepts 
under consideration. The low-level variables are those marked in light green in 
TABLE 6.1 (1-3) and are used to define the geometries of these concepts. When the 
value of the “Concept” changes, a different set of low-level variables are selected 
automatically to define the geometries of the associated concept. In this way, it is 
convenient to switch among the geometries of the concepts.
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 6.3.2.2 Simulation integration

Multi-disciplinary simulation or calculation models are integrated with the 
geometric parametric model. The initial concepts are meant for meeting a set 
of multi-disciplinary performance requirements, including daylight, energy, and 
cost requirements. The completeness level of the requirements is not very high, 
as the focus of this case is not on discussing the completeness of requirements, 
but rather on showing how to find meaningful measures in an informed manner. 
The requirements are initially represented by the performance measures shown 
in TABLE 6.2. There can be multiple performance measures for the same kind of 
performance requirement. They can be considered as objectives or constraints. More 
details are provided below.

TabLe 6.2 The initial performance measures in Case Study II (Yang et al., 2020)

Disciplines Performance Measures Objectives Abbreviations Definitions

Energy use Energy Use Intensity ↓ EUI Energy used per square meter 
of floor area

Percentages of Cooling ↓ PoC Percentages of energy used for 
cooling, heating, lighting, and 
equipment, respectively (which 
can be used as meaningful 
objectives, if they account for 
major portions of energy use)

Percentages of Heating ↓ PoH

Percentages of Lighting ↓ PoL

Percentages of Equipment ↓ PoE

Daylight 
availability

Useful Daylight Illuminance 
(<100)

↓ UDI (<100) Percentage of floor area that 
meets the specified illuminance 
range for at least 50% of the 
occupied time (i.e., UDImod)

Useful Daylight Illuminance 
(100-2000)

↑ UDI (100-2000)

Useful Daylight Illuminance 
(>2000)

↓ UDI (>2000)

Day Lit Area ↑ DLA Percentage of floor area 
that receives illuminances 
above 300 lx for at least 50% 
of the occupied time 
(i.e., DLAmod)

Over Lit Area ↓ OLA Percentage of floor area 
that receives illuminances 
above 3000 lx for at least 5% 
of the occupied time 
(i.e., OLAmod)

Daylight 
uniformity

Average Uniformity ↑ AU Annual average of illuminance 
uniformity ratios (i.e., URmod)

Cost for glass Area of Glass ↓ AoG Total area of the glass used for 
top windows
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Integration of climatic simulation

To obtain climatic performance feedback, a daylight simulation model and an 
energy simulation model are created and coupled. The inputs (i.e., geometries and 
parameters) and outputs (i.e., performance measures) of these models, and the 
software tools used for creating these models are specified below.

First, the input geometries of the simulation models include the parameterized 
geometries of the rooftop windows (described in Section 6.3.2.1) and the non-
parameterized geometry of the 40m × 70m × 15m hall in question. The rooftop 
windows are the only spots through which daylight and solar heat gain are received.

Second, the input parameters of the simulation models are mostly the same as those 
used in Case Study I, except the weather file. In this case here, the weather file of 
Guangzhou derived from Chinese Standard Weather Data is used.

Third, the output performance measures of the simulation models include those used 
in Case Study I, and some other possible measures. All these measures are initially 
treated as optimization goals.

For measuring daylight availability, the performance measure UDImod defined in 
Case Study I is also used in this case. The range of “useful” daylight illuminances is 
still 100-2000 lux, thus the measure UDImod here is denoted by UDI (100-2000). 
The range of “useless” daylight illuminances can be smaller than 100 lux or larger 
than 2000 lux, thus other possible measures include Useless Daylight Illuminance 
(<100) denoted by UDI (<100), or Useless Daylight Illuminance (>2000) denoted 
by UDI (>2000). What further differs from Case Study I is that, in this case, 
the percentage of occupied hours for which the “useful” or “useless” daylight 
illuminances are received is set to 50%. Moreover, Day Lit Area denoted by DLA and 
Over Lit Area denoted by OLA are also possible measures. They are respectively 
defined as the percentage of floor area that receives illuminances above 300 lux for 
at least 50% of the occupied time, and the percentage of floor area that receives 
illuminances above 3000 lux for at least 5% of the occupied time. The UDI (100-
2000) and DLA are to be maximized; the UDI (<100), UDI (>2000), and OLA are to 
be minimized.

For measuring daylight uniformity, the performance measure URmod defined in Case 
Study I is also used in this case. Given that the URmod is actually the annual average 
of illuminance uniformity ratios, it is called Average Uniformity and denoted by AU 
here. The AU is to be maximized.
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For measuring energy usage, the performance measure EUI defined in Case Study 
I is also used in this case. Moreover, Percentages of Lighting (PoL), Percentages of 
Cooling (PoC), Percentages of Heating (PoH), and Percentages of Equipment (PoE) 
are also possible measures, which are respectively defined as the percentage of 
energy use for lighting, cooling, heating, and equipment. The EUI, PoL, PoC, PoH, and 
PoE are to be minimized.

Finally, the software tools used for creating the simulation models are Grasshopper’s 
plug-ins called Ladybug and Honeybee which adopt Daysim and EnergyPlus 
simulation engines, as in Case Study I.

Integration of cost calculation

To obtain cost performance feedback, a simple cost calculation model is created. The 
inputs (i.e., geometries and parameters) and outputs (i.e., performance measures) of 
this model and the software tools used for creating this model are specified below.

First, the input geometries of the calculation model include the parameterized 
geometries of the near-horizontal skylights, monitor skylights, and sawtooth 
skylights (described in Section 6.3.2.1). These parametrically changeable geometries 
determine the amount of glass used for the rooftop windows, and hence affect the 
cost calculations.

Second, the input parameters of the calculation model can be omitted in this case. 
Specifically, the glass unit price can be omitted because the same type of glass is 
used in this case.

Third, the output performance measures of the calculation model include the Area of 
Glass (AoG). This measure is initially treated as an optimization goal.

Reducing glass costs is important for indoor sports halls to save initial investment 
costs. The AoG is a performance measure useful for reflecting the glass cost. It 
represents the total area of glass used for the rooftop windows and is proportional to 
glass cost. The AoG is to be minimized.

Finally, the software tools used for creating the calculation model are Grasshopper’s 
native components. These components are used to facilitate the geometric 
parameterization and hence the cost calculations (i.e., glass area calculations).
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 6.3.3 Output of Phase-I

The main output of Phase-I is an initial MOO model which includes an initial set of 
performance objectives, constraints, and design variables. This model is to be used 
in the next phase.

 6.4 Phase-II adopting a cyclical 
re-formulation process

Phase-II (i.e., Optimization Problem Re-Formulation) of the Subtype-II method (i.e., 
dynamic method) adopts a cyclical process.

In Case Study II, the design context is to highlight sparking new design possibilities; 
thus, the cyclical re-formulation process adopted is a three-time re-formulation 
process that focuses on adding new variables (i.e., enriching new concepts 
divergently). For this re-formulation, designers have to discover the answers to the 
following questions:

 – Which performance measures are more meaningful for final objectives 
or constraints?

 – Which existing concepts are more promising to lead to good quantitative and 
qualitative performances?

 – Which new concepts are more promising to lead to good quantitative and 
qualitative performances?

 – How to achieve a proper MOO model that has the potential to lead to better 
Pareto solutions?

Normally, designers answer these questions highly relying on their personal past 
experiences. However, with the increase of the performance objectives, constraints, 
and design variables, the complexity of these questions increases rapidly. In this 
circumstance, it is difficult for designers to obtain the right answers to these 
questions by purely relying on their past experiences.
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Given the above fact, it is necessary to carry out quantitative data analysis from 
multiple angles in this phase, in order to extract useful information and knowledge 
and to support the cyclical re-formulation process. As exemplified in FIG.3.5, three 
types of actions are conducted in each re-formulation iteration (Section 6.4.1, 6.4.2 
and 6.4.3) for achieving a final MOO model (Section 6.4.4).

 6.4.1 The first-time re-formulation

 6.4.1.1 Data generation

The first group of 300 data sets is generated for analysis. It is derived based on 
an automation process consisting of a MOO model, the Uniform Latin Hypercube 
sampling algorithm, and the sequential execution order (see FIG.6.5). A data set 
contains quantitative data (i.e., numeric design values and performance values) and 
qualitative data (i.e., building geometries).

Concept LightingBandNumber WindowLength WindowWidth WindowWidthNS OpeningWidth Design 
variables

Performance 
measures

FIG. 6.5 The automation process for generating the data in Case Study II

Note: The variables in the automation process can be revised for each re-formulation iteration.

 6.4.1.2 Information and knowledge extraction

Based on the first group of 300 data sets, three categories of knowledge are 
extracted, namely knowledge about the performance measures, promising existing 
concepts, and promising new concepts, as exemplified in FIG.3.5.
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Knowledge about the performance measures

To acquire knowledge about which quantitative performance measures are more 
meaningful for final objectives or constraints, it is helpful to extract correlations 
between related measures. The quantitative data (having all the initial measures as 
its dimensions) is analyzed using a specific correlation analysis technique – Self-
Organizing Map (Kohonen, 2001). As a result, SOM planes of all the initial measures 
are generated and visualized on a large hexagonal grid (see FIG.6.6, left). Based 
on the result, correlation information is extracted and interpreted, so as to acquire 
desired knowledge, as described below.

FIG. 6.6 Self-Organizing Map planes (Yang et al., 2020)

Note: SOM planes of all the initial measures (left); SOM planes of the three chosen quantitative performance measures (right). 
The yellow, blue, green and grey boxed lines show SOM planes of energy use, daylight availability, daylight uniformity and 
investment measures, respectively.

1 Regarding EUI and PoL, EUI is a meaningful quantitative measure, as it can 
facilitate a direct comparison of energy use among different buildings; PoL is also a 
meaningful quantitative measure, as the lighting energy use, in this case, dominates 
the total energy use. Given that they are positively and strongly correlated, and their 
optimization goals are the same, one of them can be removed.
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2 Regarding UDI (<100) and UDI (100-2000), UDI (<100) is a meaningful 
quantitative measure for reducing “useless” daylight illuminances; UDI (100-2000) 
is a meaningful quantitative measure for increasing “useful” daylight illuminances. 
Given that they are negatively and strongly correlated, and their optimization goals 
are opposite, one of them can be removed.

3 Regarding OLA and DLA, OLA is a meaningful quantitative measure that not only 
reflects daylight availability but also glare or overheating risk; DLA is a redundant 
quantitative measure, as it is negatively and considerably correlated with EUI (and 
PoL) and has an opposite optimization goal. Given these facts, DLA can be removed.

4 Regarding AU and AoG, they are meaningful quantitative measures in different 
senses. Given that they have weak correlations with the above-mentioned measures, 
either of them can be kept.

To acquire knowledge about which qualitative performance measures are more 
meaningful to be chosen to form final objectives or constraints, human subjectivity 
is required (i.e., subjectively determining meaningful qualitative measures). A 
qualitative measure Aesthetics can be considered more meaningful to be chosen 
to form a constraint, among many possible measures (e.g., cultural, social related 
measures). It is defined as the aesthetic quality of rooftop windows specifically.

Overall, in this case, the quantitative measures EUI, OLA, and AU are considered 
more meaningful to be chosen to form final objectives (i.e., Min_EUI, Min_OLA, Max_
AU, as shown in FIG.6.6, right); and the qualitative measure Aesthetics is considered 
more meaningful to be chosen to form a final constraint.

Knowledge about promising existing concepts

To acquire knowledge about which existing concepts are more promising to lead to 
good EUI, OLA, and AU performances, it is helpful to construct meaningful clusters 
of samples according to “Concept” values and performance values. The quantitative 
data (having the high-level variable “Concept” and measures EUI, OLA, and AU as its 
dimensions) is analyzed using a specific clustering analysis technique – Hierarchical 
Clustering (Jain et al., 1999). As a result, nine clusters of samples are generated and 
visualized in a parallel coordinate chart (see FIG.6.7, left). The clustering information 
is interpreted, so as to form useful knowledge, as described below.
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FIG. 6.7 Clusters in the first re-formulation iteration (Yang et al., 2020)

Note: Nine clusters of samples generated (left); three clusters of samples identified (right). CLUSTER_0 consists of samples 
from Concept 2_0; CLUSTER_6 consists of samples from Concept 2_0 and Concept 3_0; CLUSTER_7 consists of samples from 
Concept 1_0.

1 Samples in CLUSTER_0 belonging to Concept 2_0, samples in CLUSTER_6 mostly 
belonging to Concept 2_0, and samples in CLUSTER_7 belonging to Concept 1_0, 
can reach the chosen objectives simultaneously (see FIG.6.7, right).

2 Concept 1_0 and Concept 2_0 can be considered as quantitatively more promising 
existing concepts, given that the identified clusters of samples mostly belong to 
these two concepts.

3 Concept 3_0 can be considered as a quantitatively less promising existing concept, 
given that only very few identified samples in CLUSTER_6 belong to this concept.

To acquire knowledge about which existing concepts are more promising to lead 
to acceptable Aesthetics performance, human subjectivity is required. Here, it 
is assumed that Concept 1_0 and Concept 2_0 have less promising Aesthetics 
performance, Concept 3_0 has more promising Aesthetics performance.

Overall, in this stage, the existing Concept 1_0 and Concept 2_0 are 
considered quantitatively more promising and qualitatively acceptable; 
the existing Concept 3_0 is considered qualitatively more promising and 
quantitatively acceptable.
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Knowledge about promising new concepts

To acquire knowledge about which new concepts are more promising to lead to 
good EUI, OLA, and AU performances, it is helpful to understand quantitative 
performance distributions of the existing concepts. The quantitative data (having the 
measures EUI, OLA, and AU as its dimensions) is analyzed using statistical summary 
techniques. As a result, the quantitative performance distributions of Concept 1_0, 
Concept 2_0, Concept 3_0, are visualized in box-whisker plots and scatter plots (see 
FIG.6.8). The distribution information is interpreted, so as to form useful knowledge, 
as described below.

1 Regarding Concept 1_0, there is room for possible improvements of OLA and AU, 
while maintaining EUI. OLA and AU can be improved by introducing more reflected 
daylight. EUI can be maintained by keeping daylight entering through the top-facing 
windows without obstacles. Concept 1_1 is created based on these strategies - by 
lifting the skylights, enlarging the window size and the openings on the roof bottom 
surface (i.e., creating inclined opaque elements).

2 Regarding Concept 2_0, there is room for possible improvement of EUI, while 
maintaining OLA and AU. EUI can be improved by introducing more daylight into the 
space. OLA and AU can be maintained by blocking out daylight from high angles with 
the horizontal opaque elements. Concept 2_1 is created based on these strategies - 
by lifting the protruding elements (i.e., enlarging the window size).

3 Regarding Concept 3_0, there is room for possible improvements of EUI and AU, 
while maintaining OLA. EUI and AU can be improved by introducing slightly more 
daylight from around the south. OLA can be maintained by blocking out daylight from 
the opposite side of the windows with the inclined opaque elements. Concept 3_1 is 
created based on these strategies - by changing the orientation of the window to the 
south and slightly enlarging the window size.

To acquire knowledge about which new concepts are more promising to lead 
to acceptable Aesthetics performance, human subjectivity is required. Here, it 
is assumed that Concept 1_1 and Concept 2_1 have less promising Aesthetics 
performance, Concept 3_1 has more promising Aesthetics performance, and that no 
other new concepts are generated only for an aesthetical purpose.

Overall, in this stage, the new Concept 1_1, Concept 2_1, and Concept 3_1 are 
considered helpful for improving quantitative performances and maintaining 
acceptable qualitative performance.
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FIG. 6.8 Box-whisker plots and scatter plots for showing the quantitative performance distributions of all concepts in Case 
Study II (Yang et al., 2020)
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 6.4.1.3 Multi-objective optimization model re-formulation

The initial MOO model is re-formulated based on the acquired knowledge. The 
specific re-formulation actions include quantitative objective reduction, qualitative 
constraint addition, and divergent concept generation, as suggested by the 
acquired knowledge.

Specifically, the quantitative objectives other than Min_EUI, Min_OLA, and Max_AU 
are removed; a qualitative constraint Cons_Aesthetics is taken into account; for 
generating Concept 1_1, ExtrusionHeight and ExtraOpeningWidth are added and 
WindowWidth is revised; for generating Concept 2_1, WindowWidthNS is revised; for 
generating Concept 3_1, BuildingOrientation is added and WindowWidth is revised. 
The blue texts in TABLE 6.1 (4-6) represent the newly added and revised variables in 
this re-formulation iteration.

 6.4.2 The second-time re-formulation

 6.4.2.1 Data generation

The second group of 300 data sets is generated for analysis. It is derived based on 
an updated automation workflow. The workflow is updated by uploading the first re-
formulated MOO model.

 6.4.2.2 Information and knowledge extraction

Based on the second group of 300 data sets, a category of knowledge is extracted, 
namely knowledge about promising new concepts besides the existing ones, as 
exemplified in FIG.3.5.
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Knowledge about promising new concepts besides 
the existing ones

Finding quantitatively promising new concepts in the second re-formulation iteration 
is similar to that in the first re-formulation iteration. As a result, the quantitative 
performance distributions of Concept 1_1, Concept 2_1, and Concept 3_1, are 
visualized in box-whisker plots and scatter plots (see FIG.6.8). Based on the result, 
distribution information is extracted and interpreted, so as to acquire desired 
knowledge, as described below.

1 Regarding Concept 1_1, AU is improved as expected, but unexpectedly, OLA 
becomes worse. This may indicate that daylight reflected by the north inclined 
opaque element is too concentrated in some spots. A possible strategy to fix this 
issue can be reflecting or redirecting daylight into a broader range. Concept 1_2 is 
created based on this strategy - by making the north opaque elements vertical and 
adding shading elements.

2 Regarding Concept 2_1, EUI is improved, OLA and AU are maintained, as expected. 
In order to obtain an even better EUI, a more aggressive strategy can be increasing 
daylight from the north. Concept 2_2 is created based on this strategy – by 
expanding the openings of the roof bottom surface and enlarging the size of the 
north-facing windows.

3 Regarding Concept 3_1, EUI is improved as expected, but unexpectedly, AU does 
not become better. This may indicate that the sawtooth geometry has difficulties 
spreading daylight evenly over the space. A possible strategy to fix this issue can be 
reflecting or redirecting daylight into a broader range. Concept 3_2 is created based 
on this strategy – by expanding the openings of the roof bottom surface and adding 
shading elements.

Finding qualitatively promising new concepts in the second re-formulation iteration is 
similar to that in the first re-formulation iteration, which requires human subjectivity. 
Here, it is assumed that Concept 1_2 and Concept 2_2 have less promising 
Aesthetics performance, Concept 3_2 has more promising Aesthetics performance, 
and that no other new concepts are generated only for an aesthetical purpose.

Overall, in this stage, the new Concept 1_2, Concept 2_2, and Concept 3_2 are 
considered helpful for improving quantitative performances and maintaining 
acceptable qualitative performance.
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 6.4.2.3 Multi-objective optimization model re-formulation

The latest MOO model is further re-formulated based on the acquired knowledge. The 
specific re-formulation actions include divergent concept generation, as suggested 
by the acquired knowledge.

Specifically, for generating Concept 1_2, ShadingAngleA is added; for generating 
Concept 2_2, ExtrusionHeight and ExtraOpeningWidth are added, OpeningWidth 
is revised, and WindowWidthNS is removed; for generating Concept 3_2, 
ShadingAngleB is added and OpeningWidth is revised. The red texts in TABLE 6.1 (7-
9) represent the newly added and revised variables in this re-formulation iteration.

 6.4.3 The third-time re-formulation

 6.4.3.1 Data generation

The third group of 300 data sets is generated for analysis. It is derived based on an 
updated automation workflow. The workflow is updated by uploading the second re-
formulated MOO model.

 6.4.3.2 Information and knowledge extraction

Based on the third group of 300 data sets, a category of knowledge is extracted, 
namely knowledge about promising existing concepts among all explored ones, as 
exemplified in FIG.3.5.

Knowledge about promising existing concepts among 
all explored ones

Finding quantitatively promising existing concepts in the third re-formulation 
iteration, is similar to that in the first re-formulation iteration. The quantitative data 
to be analyzed here includes all 900 data sets (i.e., all three groups of data sets). As 
a result, ten clusters of samples are generated and visualized in a parallel coordinate 
chart (see FIG.6.9, left). Based on the result, clustering information is extracted and 
interpreted, so as to acquire desired knowledge, as described below.
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FIG. 6.9 Clusters in the third re-formulation iteration (Yang et al., 2020)

Note: Ten clusters of samples generated (left); three clusters of samples identified (right). CLUSTER_1 consists of samples 
from Concept 2_2; CLUSTER_8 consists of samples from Concept 1_0 and Concept 1_1; CLUSTER_9 consists of samples from 
Concept 2_0 and Concept 2_1.

1 Samples in CLUSTER_1 belonging to Concept 2_2, samples in CLUSTER_8 belonging 
to Concept 1_0 and Concept 1_1, and samples in CLUSTER_9 belonging to 
Concept 2_0 and Concept 2_1 can reach the chosen objectives simultaneously (see 
FIG.6.9, right).

2 Concept 1_0, Concept 1_1, Concept 2_0, Concept 2_1, and Concept 2_2 can be 
considered as quantitatively more promising existing concepts, given that the 
identified clusters of samples belong to these five concepts.

3 Concept 3_0, Concept 3_1, Concept 3_2, and Concept 1_2 can be considered as 
quantitatively less promising existing concepts, given that the identified clusters of 
samples do not belong to these four concepts.

It is worth noting that concepts generated in later re-formulation iterations may not 
necessarily outperform those generated in earlier re-formulation iterations due to 
possible inaccuracy of prior knowledge. For instance, Concept 1_2 performs worse 
than Concept 1_1 in AU and EUI; Concept 2_2 performs worse than Concept 2_1 in 
AU and OLA, as shown in FIG.6.8. That is, the inaccuracy of prior knowledge can be 
corrected if it occurs during the re-formulation.

Finding qualitatively promising existing concepts in the third re-formulation iteration is 
similar to that in the first re-formulation iteration, which requires human subjectivity. 
Here, it is assumed that Concept 1_0, Concept 1_1, Concept 1_2, Concept 2_0, Concept 
2_1, and Concept 2_2 have less promising Aesthetics performance, and Concept 3_0, 
Concept 3_1, and Concept 3_2 have more promising Aesthetics performance.
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Overall, in this stage, the existing Concept 1_0, Concept 1_1, Concept 2_0, 
Concept 2_1, and Concept 2_2 are considered quantitatively more promising; the 
existing Concept 3_0, Concept 3_1, and Concept 3_2 are considered qualitatively 
more promising; the existing Concept 1_2 is considered quantitatively and 
qualitatively less promising.

 6.4.3.3 Multi-objective optimization model finalization

The latest MOO model is further re-formulated based on the acquired knowledge. The 
specific re-formulation actions include convergent concept selection, as suggested 
by the acquired knowledge.

For different purposes of study, different MOO models can be created. In this study, 
MOO models 0-9 are created by selecting different sets of design variables, as 
described below.

The first purpose is to study whether the Subtype-II method (i.e., dynamic method) 
is better than the traditional method (defined in FIG.3.1). For this, MOO model 0 is 
created based on the traditional method. It means that all the initial design variables 
are kept unchanged to create the model. Moreover, MOO models 1, 2, 4, 5, and 8 are 
created based on the acquired knowledge. First, the way of selecting concepts is 
assumed to be prioritizing quantitative performances; then, the variables related 
to the quantitatively more promising concepts are selected (i.e., Concept 1_0, 
Concept 1_1, Concept 2_0, Concept 2_1, and Concept 2_2). Given that these 
selected concepts can also be denoted by using the “Concept” values 1, 2, 4, 5, 
and 8, the resulting MOO models are denoted by using the same numbers.

The second purpose is to study how the choice of the high-level variable values (i.e., 
“Concept” values) may affect the optimization results. For this, MOO models 3, 6, 
and 9 are created. First, the way of selecting concepts is assumed to be prioritizing 
qualitative performances; then, the variables related to the qualitatively more 
promising concepts are selected (i.e., Concept 3_0, Concept 3_1, and Concept 3_2). 
Moreover, MOO model 7 is created. First, the way of selecting concepts is assumed 
to be prioritizing neither quantitative performances nor qualitative performances; 
then, the variables related to the quantitatively and qualitatively less promising 
concept are selected (i.e., Concept 1_2). Given that the selected concepts can be 
also denoted by using the “Concept” values 3, 6, 9 and 7, the resulting MOO models 
are denoted by using the same numbers.
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The fourth purpose is to study how the use of a purely random initial population may 
affect the optimization results. For this, MOO models 1-9 are used.

 6.4.4 Output of Phase-II

The main output of Phase-II includes a final MOO model which includes a final set 
of performance objectives, constraints, and design variables (i.e., MOO model 1). 
Moreover, it can also include other MOO models for comparison purposes. In this 
case, all of them are to be used in the next phase.

 6.5 Phase-III utilizing a directed initial 
population

Phase-III (i.e., Optimization Problem Solving) of the Subtype-II method (i.e., dynamic 
method) utilizes a directed initial population.

In Case Study II, the directed initial population consists of samples selected from 
high-performing clusters. Such clusters can be found from the parallel coordinate 
chart shown in FIG.6.9. In order to study relevant hypotheses, different initial 
populations (i.e., directed and purely random initial populations) are used in 
combination with different MOO models. They are used to set up multiple MOO runs 
which are then executed (Section 5.6.1). MOO results are compared (Section 5.6.2), 
in order to extract knowledge about the hypotheses as the main output of this phase 
(Section 5.6.3).

TOC



 220 Design as  Exploration

 6.5.1 Multi-objective optimization setup

 6.5.1.1 Setup for studying hypothesis one

It is hypothesized that adopting the Subtype-II method (i.e., dynamic method) can 
help achieve a quantitatively and qualitatively better Pareto front, compared with 
adopting the traditional method (defined in FIG.3.1). For studying this hypothesis, 
two groups of MOO runs are set up (i.e., MOO run A and B), as described below.

For studying the effects of adopting the traditional method, MOO run A is set up. It 
is based on: MOO model 0 (in which the “Concept” is treated as a high-level variable 
with the range of 1, 2, and 3) and a purely random initial population (selected from 
the entire design space). It includes one MOO run.

For studying the effects of adopting the Subtype-II method (i.e., dynamic method), 
MOO run B is set up. It is based on: MOO model 1, 2, 4, 5, and 8 (in each of which 
the “Concept” is treated as a constant value, namely 1, 2, 4, 5, and 8 respectively) 
and directed initial populations (selected from high-performing clusters having the 
chosen “Concept” values). It includes five MOO runs.

 6.5.1.2 Setup for studying hypothesis two

It is hypothesized that factors including the choice of high-level variable values and 
initial populations may affect the behaviors of Subtype-II method (i.e., dynamic 
method). More specifically, factors of choosing different high-level variable values 
(i.e., “Concept” values) and utilizing a purely random initial population may affect 
final MOO results. For studying this hypothesis, three more groups of MOO runs are 
set up (i.e., MOO runs C to E), as described below.

For studying the impacts of choosing different high-level variable values (i.e., 
“Concept” values), MOO runs C and D are set up. MOO run C is based on: MOO 
models 3, 6, and 9 (in each of which the “Concept” is treated as a constant value, 
namely 3, 6, and 9 respectively) and directed initial populations (selected from high-
performing clusters having the chosen “Concept” values). It includes three MOO 
runs. MOO run D is based on: MOO model 7 (in which the “Concept” is treated as 
a constant value, namely 7) and a directed initial population (selected from high-
performing clusters having the chosen “Concept” value). It includes one MOO run.
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For studying the impacts of utilizing a purely random initial population, MOO run E is 
set up. It is based on: MOO models 1-9 and random initial populations (selected from 
the entire design space). It includes nine MOO runs.

 6.5.1.3 Optimization execution

There is a total of nineteen optimizations to execute. For all these optimizations, the 
same MOO algorithm and settings are used: Non-dominant Sorting Genetic Algorithm 
II (NSGA-II), a population size of 30, and 10 generations etc. All these optimizations 
are executed on a 6-Core (12-Thread) computer. The total time for executing each 
optimization is within 1 day; and the average time for evaluating each solution is 
around 2.5-4.5 minutes.

 6.5.2 Multi-objective optimization result comparison

The MOO results include the (quantitative and qualitative) data of Pareto solutions. 
The data is organized in ways that facilitate the comparison of Pareto solutions (see 
FIG.6.10 - FIG.6.14). For instance, the performance values of Pareto solutions are 
plotted in the same 3D space; the numbers of Pareto solutions belonging to different 
concepts and the hypervolume values of Pareto fronts are presented. Moreover, the 
optimization result comparison is summarized in TABLE 6.3.

FIG. 6.10 Optimization results derived from MOO run A in Case Study II
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FIG. 6.11 Optimization results derived from MOO run B in Case Study II

FIG. 6.12 Optimization results derived from MOO run C in Case Study II

FIG. 6.13 Optimization results derived from MOO run D in Case Study II
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FIG. 6.14 Optimization results derived from MOO run E in Case Study II
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TabLe 6.3 Summary of optimization result comparison in Case Study II
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Verify the benefits of adopting the 
Subtype-II method

s-Pareto solutions from MOO run B (compared 
with Pareto solutions from MOO run A)

- x + x +

Verify the impacts of choosing 
different high-level variable values 
(i.e., “Concept” values)

s-Pareto solutions from MOO run C (compared 
with s-Pareto solutions from MOO run B)

- - - + -

Pareto solutions from MOO run D (compared 
with s-Pareto solutions from MOO run B)

+ + - x -

Verify the impacts of utilizing a 
purely random initial population

Pareto solutions from MOO run E (compared 
with Pareto solutions from MOO run B, C, D)

x x - x x

Note: “+” represents better results or positive impacts; “-” represents worse results or negative impacts; “x” represents similar 
results or no significant impacts.

Some issues are important when comparing the MOO results. First, it is important 
to know the concept of an s-Pareto front (Mattson and Messac, 2003; Mattson and 
Messac, 2005). The s-Pareto front is actually a new kind of Pareto front derived by 
combining multiple individual Pareto fronts. This combination applies the Pareto 
dominance principle to all the solutions on the individual Pareto fronts, thus figuring 
out a new set of non-dominated solutions that constitute the s-Pareto front. 
Moreover, it is also important to make clear what an ideal Pareto front (or s-Pareto 
front) is in the context that highlights sparking new design possibilities. As explained 
in Section 3.2.3.3, an ideal Pareto front (or s-Pareto front) in this context should 
have good proximity and diversity, good pertinence, good geometric preference 
compliance, and good geometric variation appropriateness. Here, good pertinence 
means that Pareto solutions are within a large region of interest; good geometric 
variation appropriateness means that Pareto solutions have a high degree of 
geometric variations.

 6.5.2.1 Result comparison for verifying hypothesis one

To verify the benefits of adopting the Subtype-II method (i.e., dynamic method), the 
s-Pareto solutions from MOO run B (see FIG.6.11) are compared with the Pareto 
solutions from MOO run A (see FIG.6.10).
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The s-Pareto solutions from MOO run B (1) have a quantity less similar to the size 
of the initial population; (2) are within a similar region of interest; (3) lead to a 
higher hypervolume value 2312.77; (4) are similarly compliant with the geometric 
preference; and (5) have a higher degree of geometric variations. These facts 
confirm that adopting the Subtype-II method (i.e., dynamic method) can help 
achieve a better Pareto front in terms of the proximity and diversity, and geometric 
variation appropriateness, compared with adopting the traditional method.

 6.5.2.2 Result comparison for verifying hypothesis two

To verify the impacts of choosing different high-level variable values (i.e., “Concept” 
values), the s-Pareto solutions from MOO run C (see FIG.6.12) and the Pareto 
solutions from MOO run D (see FIG.6.13) are respectively compared with the 
s-Pareto solutions from MOO run B (see FIG.6.11).

First, the s-Pareto solutions from MOO run C (1) have a quantity less similar to the 
size of the initial population; (2) are within a smaller region of interest; (3) lead 
to a lower hypervolume value 615.12; (4) are more compliant with the geometric 
preference; and (5) have a lower degree of geometric variations. These facts 
confirm that choosing “Concept” values 3, 6, and 9 can have negative impacts 
on the quantity, pertinence, proximity and diversity, and geometric variation 
appropriateness of the s-Pareto front, but have positive impacts on the geometric 
preference compliance.

Second, the Pareto solutions from MOO run D (1) have a quantity more similar to 
the size of the initial population; (2) are within a larger region of interest; (3) lead to 
a lower hypervolume value 1190.66; (4) are similarly compliant with the geometric 
preference; and (5) have a lower degree of geometric variations. These facts confirm 
that choosing “Concept” values 7 can have negative impacts on the proximity and 
diversity and geometric variation appropriateness of the Pareto front but have 
positive impacts on the quantity and pertinence.

To verify the impacts of utilizing a purely random initial population, the nine 
sets of Pareto solutions from MOO run E (see FIG.6.14) are compared with the 
corresponding nine sets of Pareto solutions from MOO runs B, C, and D (see 
FIG.6.11 – FIG.6.13). The Pareto solutions derived by utilizing a purely random 
initial population are roughly similar to those derived by utilizing a directed initial 
population, in terms of the quantity, pertinence, geometric preference compliance, 
and geometric variation appropriateness; but the former Pareto solutions have 
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lower hypervolume values. These facts confirm that utilizing a purely random 
initial population can have negative impacts on the proximity and diversity of the 
Pareto fronts.

 6.5.3 Output of Phase-III

The main output of Phase-III includes not only final Pareto solutions and s-Pareto 
solutions, but also various knowledge derived by comparing these solutions. In this 
case, the knowledge obtained in this phase is about the benefits of adopting the 
Subtype-II method (i.e., dynamic method) and the factors affecting the behaviors of 
the method.

 6.6 Discussion

In this case study, the benefits of adopting the Subtype-II method (i.e., dynamic 
method) are derived from the incorporation of the cyclical knowledge-supported 
re-formulation process (Section 6.4). During the knowledge extraction process, 
divergent knowledge is obtained (i.e., the knowledge for generating new design 
solutions in the design space). With the help of this knowledge, new promising design 
variables are added to enrich concepts divergently, thus facilitating the achievement 
of a more reliable optimization model and more reliable optimal solutions.

Human designers play an influential role during the cyclical re-formulation process. 
Their influence has two sides. On one side, they have the advantages to support 
qualitative thinking and divergent thinking; while on the other side, they may 
cause negative impacts on final optimal results when using the Subtype-II method 
(i.e., dynamic method) in different ways. For instance, when designers decide to 
choose high-level variable values (i.e., “Concept” values) other than those that are 
considered quantitatively promising, negative impacts on the final Pareto front can 
occur; when designers decide to utilize a purely random initial population (rather 
than a directed initial population), the starting point for optimization is relatively low, 
which can also lead to negative impacts on the final Pareto front.
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 6.7 Conclusion

This chapter concludes by summarizing the main research results (Section 6.6.1); 
identifying possible applications of the Subtype-II method (i.e., dynamic method) 
(Section 6.6.2); and providing concluding remarks (Section 6.6.3).

 6.7.1 Main research results

The main research results of this chapter include the following:

 – The overall process of the Subtype-II method (i.e., dynamic method) has been 
demonstrate in Case Study II. This subtype method includes a three-time 
Optimization Problem Re-Formulation (Re-OPF) process that focuses on adding new 
variables (i.e., enriching more concepts divergently).

 – The benefits of adopting the Subtype-II method (i.e., dynamic method) have 
been verified. As confirmed by the optimization result comparison, adopting this 
subtype method can help achieve a better s-Pareto front in terms of proximity and 
diversity, and geometric variation appropriateness, compared with adopting the 
traditional method.

 – The factors affecting the behaviors of the Subtype-II method (i.e., dynamic method) 
have been verified. As confirmed by the optimization result comparison, factors of 
choosing different high-level variable values (i.e., “Concept” values), and utilizing 
a purely random initial population can have varying impacts on the optimization 
results, including positive and negative impacts, as summarized in TABLE 6.3. 
Most of the impacts are negative and need to be avoided; but it is also worth 
noting the positive impacts, namely the impacts of choosing different high-level 
variable values (i.e., “Concept” values) on the quantity, pertinence, and geometric 
preference compliance.
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 6.7.2 Possible applications

The Subtype-II method (i.e., dynamic method) can be further applied at least in the 
following two scenarios:

 – First, this subtype method can be applied in a scenario that involves more complete 
performance measures and more complex building geometries. In Case Study II, 
the method has just been used to deal with the hypothetical project that involves 
incomplete performance measures and simplified building geometries (for the 
convenience of demonstrating the method). However, for a practical project, it 
is often necessary to consider more complete performance measures and more 
complex building geometries.

 – Second, this subtype method can be applied in a scenario that involves multiple 
re-formulations of performance measures. In Case Study II, the method has just 
been used to deal with the hypothetical project that involves one re-formulation 
of performance measures in the Optimization Problem Initial-Formulation (Initial-
OPF) phase (for the convenience of focusing on design variable re-formulation). 
However, for a practical project, it can also be necessary to consider the iterative 
re-formulation of various performance measures.

 6.7.3 Concluding remarks

In conclusion, the Subtype-II method (i.e., dynamic method) is applicable in the 
conceptual design of a sports training hall with the aid of the new Gh-mF node. It 
is particularly useful for the relatively early sub-phase of the conceptual design 
where the main purpose is to spark new design possibilities. Thanks to the three-
time Optimization Problem Re-Formulation (Re-OPF) process, this subtype method 
can help achieve a better s-Pareto front in terms of the proximity and diversity and 
geometric variation appropriateness, compared with adopting the traditional method 
(defined in FIG.3.1). These benefits can be affected by factors like choosing different 
high-level variable values (i.e., “Concept” values), and utilizing a purely random 
initial population.
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7 Conclusions 
and future 
 recommendations
This chapter concludes the research. First, it summarizes the main contributions 
of this research (Section 7.1). Then, it presents comprehensive answers to all 
research questions to provide a more inclusive response to the contributions of 
this research (Section 7.2). Last, it points out the research limitations and future 
recommendations (Section 7.3).

 7.1 Main research contributions

In current optimal-design paradigms, there are limitations related to supporting 
ill-structured optimization problems. Specifically, there is often a lack of a way to 
ensure the achievement of a reliable optimization problem. Addressing this limitation 
is important for obtaining reliable design solutions. It is particularly true in the 
conceptual design of complex buildings like indoor sports halls, where many multi-
disciplinary performance requirements and multi-scale design concepts can be 
involved but are usually ill-defined. 

The main contributions of this research relate to a new optimal-design method 
proposed to deal with ill-defined conceptual architectural design. They can be 
summarized as follows:

 – Proposing a novel Multi-Objective and Multi-Disciplinary Optimization (MOMDO) 
method featured with dynamic and interactive Optimization Problem Re-Formulation 
(Re-OPF) for achieving more reliable high-performing solutions in conceptual 
architectural design. 
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 – Providing a flexible or an open optimal-design system that allows for considering 
quantitative and qualitative performance measures from different disciplines, and for 
considering divergent and convergent design variables from different scales.

 – Providing a human-computer interactive knowledge extraction process that can help 
designers make more informed, performance-based, early decisions on the choice 
of performance measures and design variables, and thus drive a conceptual design 
process forward towards promising directions.

 – Substantiating the relevance of Optimization Problem Re-Formulation (Re-OPF) by 
two conceptual indoor sports hall design cases that concern, respectively, refining an 
existing concept convergently and enriching new concepts divergently.

In fact, all the above contributions specifically relate to the knowledge-supported, 
dynamic and interactive Optimization Problem Re-Formulation (Re-OPF) in 
the proposed method. Therefore, such re-formulation is a key innovation which 
differentiates the proposed method from other methods in the field of architectural 
design optimization.

 7.2 Answers to the research questions

By answering the main research question and the sub-questions, a more in-depth 
understanding of the research contributions can be achieved. 

Main question: how to assist architects and engineers to extract useful 
information and knowledge to support dynamic and interactive Optimization 
Problem Re-Formulation (Re-OPF) during ill-defined conceptual design?

The main question relates to the main goal of developing a Multi-Objective and 
Multi-Disciplinary Optimization method suitable for use in ill-defined conceptual 
architectural design, by leveraging information and knowledge extraction to support 
dynamic and interactive Optimization Problem Re-Formulation (Re-OPF).

Information and knowledge extraction is the core of Optimization Problem Re-
Formulation (Re-OPF). It relies on human-computer interaction. During the 
extraction, relevant computational techniques, especially advanced quantitative 

TOC



 233 Conclusions and future  recommendations

data analysis techniques, are used to covert design and performance data into 
quantitative information; meanwhile, human designers can extract qualitative 
information based on their subjective judgments, and then interpret the quantitative 
and qualitative information into useful knowledge. Based on the knowledge, 
optimization problems are re-formulated in a more informed manner, thus driving the 
design process forward. 

Regarding the knowledge brought by this research, it includes not just disciplinary 
knowledge in a given domain or for a particular case, but more importantly the 
knowledge (i.e., the way) of structuring or re-structuring disciplinary knowledge. 
The latter knowledge seems more important, given that contemporary buildings are 
getting increasingly complex in terms of form and performance. Not only can it help 
novice designers supplement their missing disciplinary knowledge, but it can also 
inspire expert designers to apply their already known knowledge in more creative 
ways.

1 How to improve the reliability of an design task and an optimization problem, and 
to what extent do current optimal-design methods deal with this issue?

This sub-question (discussed in Chapter 2) relates to the sub-goal of ascertaining 
a way to achieving a reliable design task and a reliable optimization problem and of 
identifying the general state of optimal-design methods in supporting this way.

Dynamic and interactive design task re-definition is a potential means to achieve 
a more reliable design task. For an ill-defined design task, the priority is task 
framing (more precisely task re-framing) rather than task-solving. The task re-
framing can reduce inaccuracies or uncertainties in a design task and is good for 
obtaining more reliable design solutions. The task-framing can be aided by the use of 
optimization (i.e., partially converting an ill-defined design task into an ill-structured 
optimization problem).

Dynamic and interactive Optimization Problem Re-Formulation (Re-OPF) is a 
potential means to achieve a more reliable optimization problem. For an ill-
structured optimization problem, problem-framing (more precisely problem re-
framing) is more essential than problem-solving. An ideal optimal-design paradigm 
should shift the priority from Optimization Problem Solving (OPS) to Optimization 
Problem Re-Formulation (Re-OPF). Although inaccuracies or uncertainties are often 
unavoidable when converting a design task into an optimization problem, it is worth 
reducing them to the fullest possible extent.
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The dynamic and interactive features are important for the above re-definition and 
re-formulation. The former allows continuous knowledge extraction, while the latter 
supports both quantitative and qualitative considerations and both divergent and 
convergent considerations. These features make it possible to re-consider an ill-
defined design task and an ill-structured optimization problem in a more informed 
and inclusive manner, thus helping to achieve a less ill-defined design task and a less 
ill-structured optimization problem.

According to a preliminary review, current optimal-design methods rarely consider 
Optimization Problem Re-Formulation (Re-OPF), not to mention dynamic and 
interactive re-formulation. This leads to further reviews that focus on Multi-Objective 
Optimization (MOO).

2 To what extent: (1) is dynamic and interactive Optimization Problem Re-Formulation 
(Re-OPF) supported? (2) are necessary computational techniques provided? (3) are 
optimal-design methods applied to the conceptual design of sports buildings?

This sub-question (discussed in Chapter 2) relates to the sub-goal of identifying 
the state of the art of Multi-Objective Optimization (MOO) design methods, software 
workflows, and application to the conceptual design of sports buildings.

A detailed review of Multi-Objective Optimization (MOO) design methods has 
shown that existing methods may adopt different computational techniques (e.g., 
parametric geometric modeling, sampling algorithms, multi-disciplinary simulation 
modeling, Multi-Objective Optimization algorithms, quantitative data analysis, 
and qualitative data visualization) in various ways, but these techniques are not 
necessarily used in a way that facilitates the Optimization Problem Re-Formulation 
(Re-OPF). More specifically, there is a lack of Multi-Objective Optimization (MOO) 
design methods that have incorporated dynamic and interactive Optimization 
Problem Re-Formulation (Re-OPF); and the few methods that have done so still have 
room for improvement, especially in terms of information and knowledge extraction.

A broad review of Multi-Objective Optimization (MOO) software workflows has 
indicated that Visual Programming (VP) software and Process Integration and Design 
Optimization (PIDO) software have great potential to offer the aforementioned 
computational techniques, but these two types of software are not usually used 
together. In other words, there is a lack of Multi-Objective Optimization (MOO) 
software workflows that have integrated Visual Programming (VP) software and 
Process Integration and Design Optimization (PIDO) software; and a software 
workflow that have done so still has limitations, especially in terms of software 
integration (i.e., the integration of Grasshopper and modeFRONTIER).
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Another review has been conducted to understand the state of the art in applying 
optimal-design methods to the conceptual design of sports buildings. According to 
the review, optimal-design methods, especially Multi-Objective Optimization (MOO) 
design methods, are not commonly used during the conceptual design of sports 
buildings; and the conceptual sports building design processes that utilize optimal-
design methods have not fully considered building geometry interaction and building 
performance conflicts.

3 How to arrange actions and adopt necessary computational techniques for the 
proposed optimal-design method?

This sub-question (discussed in Chapter 3) relates to the sub-goal of developing an 
optimal-design method that enables dynamic and interactive Optimization Problem 
Re-Formulation (Re-OPF). It is directly associated with the main question.

The proposed method consists of three phases. In these phases, several groups of 
general actions are arranged and several types of computational techniques are 
adopted in flexible ways.

 – Phase-I: Optimization Problem Initial-Formulation (Initial-OPF)

This phase deals with the formulation of an initial MOO model. It involves two groups 
of general actions.

Initial concept generation: designers can brainstorm one or multiple initial design 
concepts based on their own knowledge or past experiences, and then choose 
desired design variables to fulfill the initial performance requirements that they 
consider are important.

Initial MOO model formulation: based on the selected initial design variables and 
performance measures, designers can create their own initial parametric geometry 
model and integrate it with multiple simulation models by using flexible parametric 
geometric modeling and multi-disciplinary simulation modeling techniques (e.g., 
two-level variable structure, modular programming). As a result, an initial MOO 
model consisting of an initial set of performance objectives, constraints and design 
variables is achieved.
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 – Phase-II: Optimization Problem Re-Formulation (Re-OPF)

This phase deals with the re-formulation of the initial (or latest) MOO models. 
It can iterate through the following three groups of general actions for one or 
multiple times.

Data generation: samples can be selected automatically by using an advanced 
sampling algorithm (e.g., Uniform Latin Hypercube sampling) from the design space 
defined by the initial (or latest) MOO model. The chosen samples, as a representation 
of the entire design space, are used to generate qualitative data sets (i.e., images 
showing building geometries) and quantitative data sets (i.e., input values 
defining building geometries and output values representing performance results) 
automatically in sequential order.

Information and knowledge extraction: to extract information about quantitative 
performances, the quantitative data sets can be analyzed by computers using 
advanced quantitative data analysis techniques (e.g., Self-Organizing Map, 
Hierarchical Clustering, Smoothing Spline Analysis of Variance); to extract 
information about qualitative performances, the qualitative data sets can be 
observed by humans with the aid of useful qualitative data visualization techniques 
(e.g., combined data visualization). Then, designers can interpret these two types of 
information and synthesize them into new knowledge about which design variables 
and performance measures should be added or removed.

MOO model re-formulation: based on the extracted knowledge, designers can re-
define and integrate the initial (or latest) parametric geometry model and simulation 
models by using flexible parametric geometric modeling and multi-disciplinary 
simulation modeling techniques (e.g., two-level variable structure, modular 
programming). As a result, a new MOO model consisting of a new set of performance 
objectives, constraints and design variables is achieved.

The above three groups of general actions can iterate once or multiple times. At the 
end of the re-formulation iteration(s), a final MOO model consisting of a final set of 
performance objectives, constraints and design variables is achieved.

 – Phase-III: Optimization Problem Solving (OPS)

This phase deals with the solving of the final MOO model. It involves two groups of 
general actions.
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MOO setup and execution: samples can be selected manually from the design space 
defined by the final MOO model (more precisely, from the high-performing clusters 
of samples in that design space). The chosen samples, as an initial population 
for optimization, are used to generate qualitative data sets and quantitative 
data sets automatically according to an optimization algorithm, thus achieving 
optimization results.

MOO result comparison: designers can compare the optimization results for different 
purposes, such as for making final design decisions and/or for verifying factors that 
may affect the behaviors of the used method. Thus, the final output can be Pareto 
solutions and/or knowledge about the used method.

The proposed method has two subtypes that are distinguished from each other 
mainly by their different numbers of re-formulation iterations.

 – Subtype-I: Non-dynamic, Interactive Re-formulation method

This subtype method (exemplified in FIG.3.4) includes one re-formulation iteration. 
It can suit the design context where the main purpose is to reduce existing design 
possibilities (i.e., shrink exploration space), such as the circumstance in the relatively 
late sub-phase of conceptual architectural design.

 – Subtype-II: Dynamic, Interactive Re-formulation method

This subtype method (exemplified in FIG.3.5.) includes multiple re-formulation 
iterations. It can suit the design context where the main purpose is to spark new 
design possibilities (i.e., expand exploration space), such as the circumstance in the 
relatively early sub-phase of conceptual architectural design.

In a single re-formulation iteration, specific actions can be customized and different 
computational techniques can be adopted. For example, in FIG.3.5, design concepts 
can be re-formulated convergently and/or divergently; different data analysis 
techniques can be used to extract different kinds of information.

4 How to select software tools and integrate them seamlessly into the proposed 
software workflow?

This sub-question (discussed in Chapter 4) relates to the sub-goal of establishing 
a software workflow that can support the implementation of the proposed optimal-
design method.
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Visual Programming (VP) software and Process Integration and Design Optimization 
(PIDO) software have the potential to form a desired software workflow. In this 
research, McNeel’s Grasshopper (with simulation plug-ins for Daysim, EnergyPlus, 
and Karamba3D) and ESTECO’s modeFRONTIER have been selected, given that they 
can offer computational techniques necessary for the proposed method.

The integration of Grasshopper and modeFRONTIER can be achieved by using an 
integration plug-in. Given the limitations of the old plug-in, a new one (i.e., Gh-mF node) 
has been developed based on the collaboration between the Chair of Design Informatics 
at TU Delft and ESTECO SpA. The new plug-in has been through several rounds of 
development so that it can improve communication initiation, stabilize automatic 
data exchange, and simplify integration preparation. Eventually, this development 
has led to a formally supported direct integration node in modeFRONTIER.

5 How to demonstrate the use of the proposed optimal-design method and verify its 
benefits and associated affecting factors through case studies concerning indoor 
sports halls?

This sub-question (discussed in Chapter 5 and 6) relates to the sub-goal of providing 
case studies that can be used to establish the validity of the proposed optimal-
design method.

With the aid of the proposed software workflow and the new integration plug-in, two 
case studies concerning indoor sports halls have been conducted to demonstrate the 
use of the proposed method and verify its benefits and associated affecting factors.

Case Study I has considered the conceptual design of the overall geometry of a 
sports competition hall, in the context that highlights reducing existing design 
possibilities. The Subtype-I method (i.e., non-dynamic method) has been applied; 
and it has focused on a one-time re-formulation process that concerns mainly 
removing existing variables (i.e., refining an existing concept convergently).

Case Study II has considered the conceptual design of the skylight geometry of a 
sports training hall, in the context that highlights sparking new design possibilities. 
The Subtype-II method (i.e., dynamic method) has been applied; and it has focused 
on a three-time re-formulation process that concerns mainly adding new variables 
(i.e., enriching new concepts divergently).

At the end of each case study, the benefits of adopting the subtype method and the 
factors that affect its behaviors have been verified by using comparative analysis. 
Moreover, reflections have been made to further understand the subtype method.
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 7.3 Limitations and future recommendations

In this section, the research limitations and future recommendations are described. 
They relate to issues concerning the method development (Section 7.3.1) and the 
method application (Section 7.3.2).

 7.3.1 Issues concerning the method development

A possible bottleneck that can limit the potential of the proposed method is a large 
amount of time invested in parametric modeling. Indeed, parametric models are 
powerful for creating various geometric variations. Nevertheless, the modeling 
process itself is usually time-consuming. In many cases, it is not the fault of 
parametric tools, but of the abuse of these tools. It is easy for parametric designers 
to dive too deep into the fascinating details of one particular design concept, 
forgetting to jump out of the box. This is contradictory to the need to explore new 
concepts divergently during conceptual architectural design.

To solve this issue, parametric designers should focus more on the proper ways 
of using the tools to create parametric models that allow easy modification across 
different design concepts, for instance, adopting techniques like two-level variable 
structure, modular programming and others.

Another possible barrier that can limit the potential of the proposed method is a 
large amount of time invested in running high-fidelity simulation models. The time 
needed for running such simulation models usually accounts for the major portion 
of the time needed for running the whole optimization process. Reducing the 
simulation time can help to improve the efficiency of the overall optimization process, 
facilitating the use of the proposed method in practice.

For reducing the simulation time, a promising future research direction can 
be replacing high-fidelity simulation models with surrogate models during the 
optimization running process. The surrogate models are constructed by using 
data drawn from high-fidelity models, and they can provide fast approximations 
of performance objectives and constraints (Queipo et al., 2005). The potential of 
using surrogate models in architectural design optimization has been preliminarily 
shown in some of the author’s previous publications (Yang et al., 2016a; Yang et 
al., 2016b). It has been found that surrogate models can locate the promising 
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area of objective space efficiently, but the accuracy of surrogate models needs to 
be improved locally. Moreover, computational tools that utilize advanced machine 
learning techniques to create surrogate models are also on rapid development, such 
as a Grasshopper plug-in called Opossum (Wortmann, 2017).

 7.3.2 Issues concerning the method application

The two case studies in this research only include the “internal verification” rather 
than the “external validation” of the proposed method.

According to the Oxford dictionary, verification is “the process of establishing the 
validity of something”, while validation is “the action of checking or proving the 
validity of something”. In software engineering standards, verification means “a test 
of a system to prove that it meets all its specified requirements at a particular stage 
of its development”, while validation means “an activity that ensures that an end 
product stakeholder’s true needs and expectations are met” (Plutora, 2020). In this 
research, verification refers to a process of evaluating a work-in-progress method, 
to check whether the method meets the requirements specified by the internal 
developer at a particular stage of its development; in contrast, validation refers 
to a process of evaluating the end method, to check whether the method meets 
the external users’ true needs when placed in its intended environment. Given this 
definition, it is necessary to carry out systematic external validation via more case 
studies in future research, to prove the generalization of the proposed method. 

Future case studies can highlight the aspects that have not been fully studied in this 
research, as described below.

First, the two case studies in this research have focused more on the re-formulation 
of design variables, rather than the re-formulation of performance measures. They 
have just re-formulated performance measures once in a convergent manner. Thus, it 
is meaningful for future case studies to re-formulate performance measures multiple 
times in a divergent manner.

Second, the two case studies in this research have focused particularly on indoor 
sports halls, rather than other types of complex buildings. They have just studied 
some performance measures that are especially important for indoor sports halls. 
Thus, it is meaningful for future case studies to study more performance measures 
relevant to other types of complex buildings.
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Appendix I

Review of Multi-Objective Optimization (MOO) design methods (revised from Yang et al., 2020)

Literature Application field Initial 
quantitative
objectives and 
constraints

Initial 
qualitative
objectives 
and 
constraints

Initial
design variables

Ways of Re-OPF Dy-
namic 
Re-
OPF

Inter-
active 
Re-
OPF

Ty
pe

 1

Heiselberg 
et al. (2009)

Conceptual 
design of a 
seven storey 
office building

Total energy 
use (↓)
Heating demand 
(↓)

-- Non-geometric 
variables

Removing 
design variables
(1-time Re-OPF)

NO NO

Shen and 
Tzempelikos 
(2013)

Conceptual 
design of a one 
storey office 
space

Useful daylight 
illuminance (↑)
Annual lighting, 
heating and 
cooling demand 
(↓)
Annual 
source energy 
consumption (↓)

-- Window-to-wall 
ratio
Space aspect 
ratio
Non-geometric 
variables

Removing 
design variables
(1-time Re-OPF)

NO NO

Ty
pe

 2

Trabelsi et 
al. (2016)

Appliance 
scheduling in a 
smart home

Electricity cost 
(↓)
Energy 
consumption (↓)
Dissatisfied 
requests (↓)
Budget for 
electricity cost
Capacity of 
electric circuit
Allowed time 
interval etc.

-- Starting time 
of multiple 
appliances

Modifying 
quantitative 
objective 
functions
Modifying 
quantitative 
constraint 
values (4-time 
Re-OPF)

YES NO

Curtis et al. 
(2013)

Conceptual 
design of a 
two-bar truss 
structure

Mass (↓)
Deflection (↓)
Stress
Buckling 
stress etc.

-- Dimension of the 
structure
Materials of the 
structure

Adding design 
variables
(≥2-time Re-
OPF)

YES NO

Curtis et al. 
(2013)

Conceptual 
design of an 
aircraft

Cruise range (↑)
Take-off weight 
(↓)
Wetted aspect 
ratio
Maximum lift to 
drag ratio
Lift to drag 
ratio etc.

-- Wing aspect 
ratio

Adding and 
removing 
quantitative 
objectives 
(2-time Re-OPF)
Adding design 
variables
(4-time Re-OPF)

YES NO

>>>
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Review of Multi-Objective Optimization (MOO) design methods (revised from Yang et al., 2020)

Literature Application field Initial 
quantitative
objectives and 
constraints

Initial 
qualitative
objectives 
and 
constraints

Initial
design variables

Ways of Re-OPF Dy-
namic 
Re-
OPF

Inter-
active 
Re-
OPF

Ty
pe

 3

Brintrup et 
al. (2007)

Conceptual 
design of a 
one-story plant 
layout

Cost of building 
(↓)

Subjective 
expert 
satisfaction 
(↑)

Dimensions of 
multiple rooms 
and areas

Adding 
qualitative 
objectives
(1-time Re-OPF)
Maintaining 
original 
quantitative 
objectives

NO YES

Mueller and 
Ochsendorf 
(2015)

Conceptual 
design of a rigid 
frame structure

Use of material 
(↓)

Subjective 
aesthetic 
quality (↑)

3D coordinates 
of an inner 
profile of a rigid 
frame

Adding 
qualitative 
objectives
(1-time Re-OPF)
Maintaining 
original 
quantitative 
objectives

NO YES

Turrin et al. 
(2011)

Conceptual 
design of a 
dome structure

Weight of 
structure (↓)

Subjective 
aesthetic 
quality (↑)

Geometry of the 
structure

Adding 
qualitative 
objectives
(1-time Re-OPF)
Maintaining 
original 
quantitative 
objectives

NO YES

Barnum and 
Mattson 
(2010)

Conceptual 
design of a 
vehicle

Price (↓), Weight 
(↓), Seating 
(↓), Towing (↓), 
Cargo space (↓)

Subjective 
aesthetic 
quality (↑)

Geometry of 
the vehicle,
Types of doors, 
chassis, engines, 
drive styles, 
cargo

Adding 
quantitative 
objectives
(1-time Re-OPF)
Maintaining 
original 
qualitative 
objectives

NO YES

>>>
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Review of Multi-Objective Optimization (MOO) design methods (revised from Yang et al., 2020)

Literature Application field Initial 
quantitative
objectives and 
constraints

Initial 
qualitative
objectives 
and 
constraints

Initial
design variables

Ways of Re-OPF Dy-
namic 
Re-
OPF

Inter-
active 
Re-
OPF

Ty
pe

 4

Newton 
(2018)

Conceptual 
design of a solar 
shading façade

Useful daylight 
illuminance (↑)
Condensation 
harvesting (↑)

-- Geometry of the 
façade

Adding and/
or removing 
quantitative 
and qualitative 
objectives
(2-time Re-OPF)
Adding lateral-
concept design 
variables 
(2-time Re-OPF)

YES YES

Kaushik and 
Janssen 
(2013)

Conceptual 
design of an 
urban farm 
building layout

Compliance of 
adjacency rules 
(↑)

-- 3D coordinates 
of spatial units

Adding and 
removing 
quantitative 
objectives 
(1-time Re-OPF)
Adding and/
or removing 
lateral-concept 
design variables
(3-time Re-OPF)

YES YES
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Appendix II

Review of Multi-Objective Optimization (MOO) software workflows (revised from Yang et al., 2020)

Literature

To
ol

Six kinds of techniques (implemented using the tool)

(1) 
Parametric 
geometric 
modeling

(2) Multi-
disciplinary 
simulation 
modeling

(3) Multi-
objective 
optimization 
algorithms

(4) Sampling 
algorithms

(5) 
Quantitative 
data analysis

(6) Qualitative 
data 
visualization

Ty
pe

 1

Caldas (2001, 
2006, 2008)
Caldas and 
Norford (2002, 
2003)

GE
NE

_A
RC

H

Text-based 
programming
(in Unix)

Energy simulation 
(in DOE-2.1E)
Daylight 
simulation (in 
DOE-2.1E)

NSGA
(in Unix)

Random sampling
(in Unix)

Trade-off analysis
(in --)

Separated 
visualization
(in AutoCad, 
DrawDBL)

Wright et al. 
(2014)

--

Text-based 
programming
(in --)

Energy simulation 
(in EnergyPlus)
Cost calculation 
(Customized)

NSGA-II
(in --)

Random sampling
(in --)

Trade-off analysis
(in --)

Separated 
visualization
(in --)

Shea et al. 
(2006)

--

Text-based 
programming
(in Matlab)

Daylight 
simulation (in 
Radiance)
Cost calculation 
(Customized)

MACO
(in Matlab)

Random sampling
(in Matlab)

Trade-off analysis
(in Matlab)

Combined 
visualization
(in Matlab)

Conti (2013)
Conti et al. 
(2015)

--

Text-based 
programming
(in Processing)

Thermal 
calculation 
(Customized)
View quality 
calculation 
(Customized)

NSGA-II
(in Processing)

Random sampling
(in Processing)

Trade-off analysis
(in Processing)

Combined 
visualization
(in Processing)

Gagne and 
Andersen 
(2010)

--

BIM with limited
parametric 
capabilities
(in SketchUp)

Illuminance 
simulation (in 
Lightsolve Viewer)
Glare simulation 
(in Lightsolve 
Viewer)

Micro-GA
(in --)

Random sampling
(in --)

Trade-off analysis
(in --)

Separated 
visualization
(in SketchUp)

Gerber and Lin 
(2012, 2014)

H.
D.

S.
 B

ea
gle

(R
ev

it 
plu

g-
ins

) BIM with limited
parametric 
capabilities
(in Revit)

Energy simulation 
(in Green Building 
Studio)
Cost calculation 
(Customized)

A GA-based
MOO algorithm
(in H.D.S. Beagle)

Random sampling
(in H.D.S. Beagle)

Trade-off analysis
(in --)

Separated 
visualization
(in Revit)

DesignBuilder 
Software Ltd.

De
sig

nB
uil

de
r

Fast modeling 
with limited 
parametric 
capabilities
(in DesignBuilder)

Energy, thermal, 
carbon emission 
simulation (in 
EnergyPlus)
Daylight 
simulation (in 
Radiance)
Cost calculation 
(Customized)

NSGA-II
(in DesignBuilder)

A few DoE 
sampling 
algorithms
(in DesignBuilder)

Trade-off analysis
Sensitivity 
analysis
Uncertainty 
analysis
(in DesignBuilder)

Separated 
visualization
(in DesignBuilder)

>>>
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Review of Multi-Objective Optimization (MOO) software workflows (revised from Yang et al., 2020)

Literature

To
ol

Six kinds of techniques (implemented using the tool)

(1) 
Parametric 
geometric 
modeling

(2) Multi-
disciplinary 
simulation 
modeling

(3) Multi-
objective 
optimization 
algorithms

(4) Sampling 
algorithms

(5) 
Quantitative 
data analysis

(6) Qualitative 
data 
visualization

Ty
pe

 2

Janssen et 
al. (2011), 
Janssen (2013, 
2015)

De
xe

n-
Ed

de
x

Visual 
programming
(in Houdini)

Daylight 
simulation (in 
Houdarcs - 
Daysim)
Energy, thermal 
simulation (in 
Houdarcs - 
EnergyPlus)
Structure 
simulation (in 
Houdarcs – 
Calculix Z88) etc.

MOEAs, SIAs,
customized 
algorithms
(in Dexen-Eddex)

Random sampling
(in Dexen-Eddex)

Trade-off analysis
(in Dexen-Eddex)

Separated 
visualization
(in Dexen-Eddex)

Von Buelow 
(2012, 2016)

Pa
ra

Ge
n

Visual 
programming
(in Generative 
Componens)

Energy, thermal 
simulation (in 
Ecotect)
Structure 
simulation (in 
STAAD-Pro)
Acoustic 
simulation etc.

NDDP GA
(in ParaGen)

Random sampling
(in ParaGen)

Trade-off analysis
(in ParaGen)

Combined 
visualization
(in ParaGen)

Vierlinger 
and Bollinger 
(2014), 
Negendahl and 
Nielsen (2015)

Oc
to

pu
s.E

(G
ra

ss
ho

pp
er

 p
lug

-in
s)

Visual 
programming
(in Grasshopper)

Daylight 
simulation (in 
Radiance)
Energy 
simulation (in 
Be10), Thermal 
simulation (in 
HQSS)
Cost calculation 
(Customized) etc.

SPEA2, HypE
(in Octopus.E)

Random sampling
(in Octopus.E)

Trade-off analysis
(in Octopus.E)

Combined 
visualization
(in Octopus.E)

Brown and 
Mueller (2016), 
Brown et al. 
(2016) DS

E
(G

ra
ss

ho
pp

er
 p

lug
-in

s) Visual 
programming
(in Grasshopper)

Energy, thermal 
simulation 
(in Archsim - 
EnergyPlus)
Structure 
simulation (in 
Karamba3D) etc.

NSGA-II
(in DSE)

Random sampling
(in DSE)

Trade-off analysis
Sensitivity 
analysis
Cluster analysis
(in DSE)

Combined 
visualization
(in DSE)

Ty
pe

 3

Flager et al. 
(2009b)

--

BIM with limited
parametric 
capabilities
(in Digital Project)

Energy, thermal 
simulation (in 
EnergyPlus)
Structure 
simulation (in 
GSA) etc.

Darwin algorithm,
NSGA-II, MOGA 
etc.
(in ModelCenter)

Many DoE 
sampling 
algorithms
(in ModelCenter)

Trade-off analysis
Sensitivity 
analysis
Probabilistic 
analysis, etc.
(in ModelCenter)

Combined 
visualization
(in ModelCenter)

>>>
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Review of Multi-Objective Optimization (MOO) software workflows (revised from Yang et al., 2020)

Literature

To
ol

Six kinds of techniques (implemented using the tool)

(1) 
Parametric 
geometric 
modeling

(2) Multi-
disciplinary 
simulation 
modeling

(3) Multi-
objective 
optimization 
algorithms

(4) Sampling 
algorithms

(5) 
Quantitative 
data analysis

(6) Qualitative 
data 
visualization

Ty
pe

 4

ESTECO SpA.

GH
-M

F (
pr

ot
ot

yp
e)

Visual 
programming
(in Grasshopper)

Daylight 
simulation (in 
Daysim)
Energy, thermal 
simulation (in 
EnergyPlus) etc.

Many MOO 
algorithms
(in 
modeFRONTIER)

Many DoE 
sampling 
algorithms
(in 
modeFRONTIER)

Trade-off analysis
Sensitivity 
analysis
Cluster analysis
Correlation 
analysis, etc.
(in 
modeFRONTIER)

Combined 
visualization
(in 
modeFRONTIER)
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Appendix III

Review of the conceptual sports building design that applies Multi-Objective Optimization (MOO), Single-Objective Optimization 
(SOO), or no optimization methods

Literature Building 
types

Building 
geometries

Building performances Optimization

Ou
td

oo
r s

ta
di

um

In
do

or
 s

ta
di

um

G
ra

nd
-s

ta
nd

s

Bu
ild

in
g 

en
ve

lo
pe

s

Ro
of

 s
tr

uc
tu

re
s

Vi
ew

 q
ua

lit
y

So
la

r r
ad

ia
tio

n

Da
y-

lig
ht

in
g

Th
er

m
al

Op
er

at
io

na
l e

ne
rg

y

St
ru

ct
ur

al

Em
bo

di
ed

 e
ne

rg
y

Ac
ou

st
ic

Ot
he

rs

N
o

SO
O

M
OO

Sun et al. (2013) x x x x

Joseph et al. (2015) x x x x

Zargar and 
Alaghmandan (2019)

x x x x

Bianconi et al. (2020) x x x x

Shi and Yang (2013) x x x x

Zhao and Mei (2013) x x x x

Ding (2017) x x x x

Heinzelmann (2018) x x x x

Rajagopalan and Luther 
(2013)

x x x x

Cheng et al. (2016) x x x x

Suo et al. (2015) x x x x

Nord et al. (2015) x x x x

Josa et al. (2020) x x x x x x x

Arkinstall and Carfrae 
(2006)

x x x x

Holzer et al. (2007) x x x x

Flager et al. (2009b) x x x x

Brown and Mueller 
(2016)

x x x x x x

Yang et al. (2018) x x x x x x x x

Pan et al. (2019) x x x x x x x x
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Appendix IV

The actions, computational techniques and software involved in the re-formulation phase (revised from Yang et al., 2018)

Types of actions Types of computational techniques Types of software

Data
generation
(Action C)

Sample selection Design of experi-
ments sampling

Uniform Latin 
Hypercube (ULH) 
Sampling *

modeFRONTIER 
(mF)

mF’s DoE node

Automated geome-
try generation
Automated perfor-
mance simulation

Process integra-
tion (i.e., geometry 
generation and 
performance sim-
ulation process in-
tegration)

Custom Sys-
tem-to-System 
Integration *

mF’s software 
integration plug-in 
(developed in 
this research)

Information
and knowledge 
extraction
(Action D)

Quantitative infor-
mation extraction

Quantitative data 
analysis
(e.g., correlation 
analysis, cluster 
analysis, sensitivity 
analysis, summary 
statistics, etc.)

Self-Organizing 
Map (SOM) *
Pearson Correla-
tion

modeFRONTIER 
(mF)

mF’s multivariate 
analysis tool
(i.e., SOM cre-
ation tool)

Hierarchical Clus-
tering (HC) *

mF’s multivariate 
analysis tool
(i.e., HC cre-
ation tool)

Smoothing Spline 
Analysis of Vari-
ance (SS-ANO-
VA) *

mF’s sensitivity 
analysis tool

Five-Number 
Summary

mF’s distribution 
analysis chart

Qualitative infor-
mation extraction
Information 
interpretation and 
synthesis

Qualitative data 
visualization

Combined Visual-
ization

mF’s run analysis 
interface
(i.e., customizable 
visualization GUIs)

MOO model
re-formulation
(Action E)

Parametric 
geometry model 
modification

Parametric geo-
metric modeling

Two-Level Variable 
Structure *

Grasshopper (Gh) Gh’s Python script 
editor

Geometry Modular 
Programming *

Gh’s group and 
cluster features

Simulation model 
modification
Geometry-sim-
ulation model 
integration

Multi-disciplinary 
simulation mod-
eling

Simulation Modu-
lar Programming *

Integrated Dynam-
ic Modeling

Gh’s simulation 
plug-ins
(e.g., Ladybug, 
Honeybee, Karam-
ba3D)

Note: “*” marks the computational techniques focused on in this research.
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Appendix V

Comparison of the optimization results in Case Study I (Yang et al., 2018).

Pu
rp

os
es

 of
 st

ud
y

MO
O 

m
od

els

Pa
re

to
 so

lu
tio

n 
nu

m
be

r

Quantitative performances of the Pareto solutions Qualitative perfor-
mances of the Pareto 
solutions

Un
fe

as
ibl

e d
es

ign
 

nu
m

be
r

Br
ok

en
 de

sig
n 

nu
m

be
rEUI Mass UDImod-65 URmod Geometric 

preference
Geometric 
similarity

Tr
ad

iti
on

al
 

m
et

ho
d

MOO 
model 0

65 52.60 
(1.30)

204.00 
(38.50)

39.40 
(21.20)

0.59 
(0.07)

RoofSteps 
= 2,3,4,5

* 50 (10.8%) 21 (Con_URmod) 21 
(Con_SC)

Pr
op

os
ed

 
m

et
ho

d MOO 
model 1

26 52.40 
(0.60)

191.50 
(33.00)

56.10 
(7.60)

0.62 
(0.00)

RoofSteps 
= 3

*** 83 (17.9%) 72 (Con_URmod) 10 
(Con_SC)

Fa
ct

or
 

1

MOO 
model 2

4 52.65 
(1.05)

179.00 
(10.50)

46.25 
(7.55)

0.65 (0.02) RoofSteps 
= 3

*** 90 (19.9%) 67 (Con_URmod) 33 
(Con_UDImod-65) 11 
(Con_SC)

Fa
ct

or
 

2

MOO 
model 3

40 52.10 
(0.85)

178.50 
(28.50)

47.75 
(34.05)

0.60 
(0.02)

RoofSteps 
= 2

** 144 
(31.6%)

97 (Con_URmod) 72 
(Con_UC)

MOO 
model 4

20 53.10 
(1.15)

214.00 
(34.50)

38.65 
(9.85)

0.61 
(0.04)

RoofSteps 
= 4

** 186 
(41.4%)

168 (Con_URmod) 32 
(Con_SC) 10 (Con_DC)

Fa
ct

or
 

3

MOO 
model 5

19 53.20 
(0.85)

204.00 
(62.25)

34.80 
(35.55)

0.59 
(0.01)

RoofSteps 
= 3

** 302 
(65.2%)

294 (Con_URmod) 37 
(Con_SC)

Fa
ct

or
 

4

MOO 
model 1

29 53.00 
(0.93)

215.00 
(79.25)

43.90 
(17.07)

0.62 (0.03) RoofSteps 
= 3

** 165 
(35.3%)

154 (Con_URmod) 26 
(Con_SC)

In the 4th, 5th, 6th, 7th column, median performance values and interquartile ranges are shown without and with parentheses respectively.

In the 9th column, the number of stars represents the degree of geometric similarity; the more stars the more similar.

In the last column, major broken constraints (i.e., those violated by more than 10 designs) are listed; some designs may violate multiple constraints.
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Design as  Exploration
Multi-Objective and  Multi-Disciplinary Optimization (MOMDO)  
of Indoor Sports Halls

Ding Yang

There are an increasing number of optimal-design paradigms used in architectural design 
nowadays. In these paradigms, a design task is formulated, or partially formulated, as an 
optimization problem. Multi-Disciplinary Optimization and Multi-Objective Optimization, as 
two important optimal-design paradigms, have shown their great potential in improving 
the performances of complex buildings in recent decades. Nevertheless, current paradigms 
for ill‑defined conceptual architectural design still lack ways to ensure the achievement of 
a reliable optimization problem, which hinders reliable design solutions despite the use of 
advanced optimization algorithms.

To address this problem, it is necessary to shift the focus from Optimization Problem Solving to 
Optimization Problem Formulation. This research particularly focuses on knowledge-supported, 
dynamic and interactive Optimization Problem Re-Formulation in order to construct a new 
Multi-Objective and Multi-Disciplinary Optimization (MOMDO) method suitable for use in 
ill‑defined conceptual architectural design. The proposed method consists of two subtype 
methods: Non-dynamic, Interactive Re-formulation method (Subtype-I) and Dynamic, Interactive 
Re-formulation method (Subtype-II), which can be used to explore design space in a convergent 
and divergent manner respectively. To support the re-formulation, various kinds of information 
and knowledge need to be extracted by utilizing different computational techniques, such as 
advanced sampling algorithms, Self-Organizing Map, Hierarchical Clustering, Smoothing Spline 
Analysis of Variance, Two-Level Variable Structure and modular programming. Moreover, a 
software workflow that can provide these computational techniques is developed; it integrates 
McNeel’s Grasshopper, ESTECO's modeFRONTIER and simulation software tools Daysim, 
EnergyPlus and Karamba3D. With the support of this software workflow, the proposed method is 
demonstrated via two case studies concerning the conceptual design of indoor sports halls. 
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